Skip to main content
Log in

A DNA-based method for rationally assembling nanoparticles into macroscopic materials

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

COLLOIDAL particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties1–4 that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectro-scopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods2–4. A great deal of control can now be exercised over the chemical composition, size and polydis-persity1,2 of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligo-nucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmid, G. (ed.) Clusters and Colloids (VCH, Weinheim, 1994).

  2. Hayat, M. A. (ed.) Colloidal Gold: Principles, Methods, and Applications (Academic, San Diego, 1991).

  3. Bassell, G. J., Powers, C. M., Taneja, K. L. & Singer, R. H. J. Cell Biol. 126, 863–876 (1994).

    Article  CAS  Google Scholar 

  4. Creighton, J. A., Blatchford, C. G. & Albrecht, M. G. J. chem. Soc. Faraday II 75, 790–798 (1979).

    Article  CAS  Google Scholar 

  5. Brust, M., Bethell, D., Schiffrin, D. J. & Kiely, C. J. Adv. Mater. 7, 795–797 (1995).

    Article  CAS  Google Scholar 

  6. Dubois, L. H. & Nuzzo, R. G. A. Rev. phys. Chem. 43, 437–463 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Bain, C. D. & Whitesides, G. M. Angew. Chem. int. Edn. engl. 28, 506–512 (1989).

    Article  Google Scholar 

  8. Shekhtman, E. M., Wasserman, S. A., Cozzarelli, N. R. & Solomon, M. J. New J. Chem. 17, 757–763 (1993).

    CAS  Google Scholar 

  9. Shaw, S. Y. & Wang, J. C. Science 260, 533–536 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Herrlein, M. K., Nelson, J. S. & Letsinger, R. L. J. Am. Chem. Soc. 117, 10151–10152 (1995).

    Article  CAS  Google Scholar 

  11. Chen, J. H. & Seeman, N. C. Nature 350, 631–633 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Smith, F. W. & Feigon, J. Nature 356, 164–168 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Wang, K. Y., McCurdy, S., Shea, R. G., Swaminathan, S. & Bolton, P. H. Biochemistry 32, 1899–1904 (1993).

    Article  CAS  Google Scholar 

  14. Chen, L. Q., Cai, L., Zhang, X. H. & Rich, A. Biochemistry 33, 13540–13546 (1994).

    Article  CAS  Google Scholar 

  15. Marsh, T. C., Vesenka, J. & Henderson, E. Nucleic Acids Res. 23, 696–700 (1995).

    Article  CAS  Google Scholar 

  16. Mirkin, S. M. & Frankkamenetskii, M. D. A. Rev. Biophys. biomolec. Struct. 23, 541–576 (1994).

    Article  CAS  Google Scholar 

  17. Wells, R. D. J. biol. Chem. 263, 1095–1098 (1988).

    CAS  Google Scholar 

  18. Wang, Y., Mueller, J. E., Kemper, B. & Seeman, N. C. Biochemistry 30, 5667–5674 (1991).

    Article  CAS  Google Scholar 

  19. Seeman, N. C. et al. New J. Chem. 17, 739–755 (1993).

    CAS  Google Scholar 

  20. Grabar, K. C., Freeman, R. G., Hommer, M. B. & Natan, M. J. Analyt. Chem. 67, 735–743 (1995).

    Article  CAS  Google Scholar 

  21. Mucic, R. C., Herrlein, M. K., Mirkin, C. A. & Letsinger, R. L. J. chem. Soc., chem. Commun. 555–557 (1996).

  22. Linnert, T., Mulvaney, P. & Henglein, A. J. phys. Chem. 97, 679–682 (1993).

    Article  CAS  Google Scholar 

  23. Herron, N., Wang, Y. & Eckert, H. J. Am. chem. Soc. 112, 1322–1326 (1990).

    Article  CAS  Google Scholar 

  24. Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. J. Am. chem. Soc. 114, 5221–5230 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirkin, C., Letsinger, R., Mucic, R. et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996). https://doi.org/10.1038/382607a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382607a0

  • Springer Nature Limited

This article is cited by

Navigation