Skip to main content
Log in

smoothened encodes a receptor-like serpentine protein required for hedgehog signalling

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MEMBERS of the Hedgehog family of secreted proteins control a number of important inductive interactions in the development of both vertebrates and Drosophila1, but little is known about the ways in which their signalling activities are transduced. In Drosophila, hedgehog is one of the segment-polarity genes, mutations of which disrupt the pattern and polarity of individual embryonic segments2 and their adult derivatives3; several of these genes have been implicated in transduction of the hedgehog signal4–6. Here we show that the segment-polarity gene smoothened is required for the response of cells to hedgehog signalling during the development of both the embryonic segments and imaginal discs. Sequence analysis of the smoothened transcription unit reveals a single open reading frame encoding a protein with seven putative transmembrane domains. This structure is typical of G-protein-coupled receptors, suggesting that the Smoothened protein may act as a receptor for the Hedgehog ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingham, P. W. Opin. Gen. Dev. 5, 492–498 (1995).

    Article  CAS  Google Scholar 

  2. Nüsslein-Volhard, C. & Wieschaus, E. Nature 287, 795–801 (1980).

    Article  ADS  PubMed  Google Scholar 

  3. Williams, J. A. & Carroll, S. B. Bioessays 15, 567–577 (1993).

    Article  Google Scholar 

  4. Ingham, P. W., Taylor, A. M. & Nakano, Y. Nature 353, 184–187 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ingham, P. W. Nature 366, 560–562 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Forbes, A. J., Nakano, Y., Taylor, A. M. & Ingham, P. W. Development (suppl.), 115–124 (1993).

  7. Klingensmith, J. & Nusse, R. Dev. Biol. 166, 396–414 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Ingham, P. W. & Martinez-Arias, A. Cell 68, 221–235 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Roux's Arch. Dev. Biol. 193, 267–282 (1984).

    Article  Google Scholar 

  10. Bejsovec, A. & Martinez-Arias, A. Development 113, 471–485 (1991).

    CAS  PubMed  Google Scholar 

  11. Ingham, P. W. & Hidalgo, A. Development 117, 283–291 (1993).

    CAS  PubMed  Google Scholar 

  12. van den Heuvel, M., Harryman-Samos, C., Klingensmith, J., Perrimon, N. & Nusse, R. EMBO J. 12, 5293–5302 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hooper, J. E. Nature 372, 461–464 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Blair, S. S. BioEssays 17, 299–309 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Raftery, L. A., Sanicola, M., Blackman, R. K. & Gelbart, W. M. Development 113, 27–33 (1991).

    CAS  PubMed  Google Scholar 

  16. Xu, T. & Rubin, G. M. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  17. Kalderon, D. Curr. Biol. 5, 580–582 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Smoller, D. A., Pertov, D. & Harti, D. L. Chromosoma 100, 487–494 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y. et al. J. biol. Chem. 271, 4468–4476 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. Annu. Rev. Biochem. 60, 653–688 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Daub, H., Weiss, F. U., Wallasch, C. & Ullrich, A. Nature 379, 557–560 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Grand, R. J. A., Turnell, A. S. & Grabham, P. W. Biochem. J. 313, 353–368 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakano, Y. et al. Nature 341, 508–513 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Hooper, J. & Scott, M. P. Cell 59, 751–765 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Clapham, D. E. & Neer, E. J. Nature 365, 403–406 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Mohler, J. Genetics 120, 1061–1072 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chou, T. B. & Perrimon, N. Genetics 131, 643–653 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Brand, A. & Perrimon, N. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  29. Capdevilla, J. & Guerrero, I. EMBO J. 13, 4459–4468 (1994).

    Article  Google Scholar 

  30. Panganiban, G. E., Reuter, R., Scott, M. P. & Hoffman, F. M. Mol. Cell. Biol. 10, 2669–2677 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cavener, D. R. Nucleic Acids Res. 15, 1353–1361 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown, N. H. & Kafatos, F. C. J. Mol. Biol. 203, 425–437 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Heuvel, M., Ingham, P. smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382, 547–551 (1996). https://doi.org/10.1038/382547a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382547a0

  • Springer Nature Limited

This article is cited by

Navigation