Skip to main content
Log in

Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

TOPOLOGICAL defects formed during a rapid symmetry-breaking phase transition in the early Universe1,2 could be responsible for seeding large-scale structure, for the anisotropy of the microwave background radiation, and for the predominance of matter over antimatter3,4. The theory describing this cosmological phase transition is formally analogous to that describing the transition to the superfluid state in liquid 3He, so that in principle the process of cosmological defect formation can be modelled in the laboratory. Here we report the results of an experiment in which the 'primordial fireball' is mimicked using a neutron-induced nuclear reaction (n + 3He → p + 3He + 0.76 MeV) to heat small regions of superfluid 3He above the superfluid transition temperature. These bubbles of normal liquid cool extremely rapidly, and we find that their transition back to the superfluid state is accompanied by the formation of a random network of vortices (the superfluid analogue of cosmic strings). We monitor the evolution of this defect state by rotating the superfluid sample, allowing vortices to escape from the network and thus be probed individually. Our results provide clear confirmation of the idea that topological defects form at a rapid second-order phase transition, and give quantitative support to the Kibble–Zurek mechanism5,6 of cosmological defect formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeldovich, Ya. B., Kobzarev, I. Yu. & Okun, L. B. Zh. éksp. teor. Fiz. 67, 3–11 (1974); (JETP 40, 1–5 (1974).).

    ADS  CAS  Google Scholar 

  2. Kibble, T. W. B. J. Phys. A9, 1387–1398 (1976).

    ADS  Google Scholar 

  3. Vilenkin, A. & Shellard, E. P. S. Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, 1994).

    MATH  Google Scholar 

  4. Hindmarsh, M. B. & Kibble, T. W. B. Rep. Prog. Phys. 58, 477–562 (1995).

    Article  ADS  Google Scholar 

  5. Zurek, W. H. Nature 317, 505–508 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Zurek, W. H. Los Alamos preprint LA-UR-95-2269 (1995); Phys. Rep. (in the press); Acta physica polonica B24, 1301–1311 (1993).

    Google Scholar 

  7. Chuang, I., Durrer, R., Turok, N. & Yurke, B. Science 251, 1336–1342 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Bowick, M. J., Chander, L., Schiff, E. A. & Srivastava, A. M. Science 263, 943–945 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Hendry, P. C., Lawson, N. S., Lee, R. A. M., McClintock, P. V. E. & Williams, C. D. H. Nature 368, 315–317 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Volovik, G. E. & Vachaspati, T. Int. J. mod. Phys. B10, 471–521 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Parts, Ü et al. Europhys. Lett. 31, 449–454 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Turok, N. in Formation and Interaction of Topological Defects (eds Davis, A. C. & Brandenberger, R.) 283–301 (Plenum, New York, 1995).

  13. Schiffer, P. & Osheroff, D. D. Rev. mod. Phys. 67, 491–501 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Vollhardt, D. & Wölfle, P. The Superfluid Phases of3He (Taylor & Francis, London, 1990).

    Book  Google Scholar 

  15. Vachaspati, T. & Vilenkin, A. Phys. Rev. D30, 2036–2045 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruutu, V., Eltsov, V., Gill, A. et al. Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation. Nature 382, 334–336 (1996). https://doi.org/10.1038/382334a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382334a0

  • Springer Nature Limited

This article is cited by

Navigation