Skip to main content
Log in

An agent cleaving glucose-derived protein crosslinks in vitro and in vivo

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

GLUCOSE and other reducing sugars react with proteins by a non-enzymatic, post-translational modification process called non-enzymatic glycosylation or glycation. The sugar-derived carbonyl group adds to a free amine, forming a reversible adduct which over time rearranges to produce a class of products termed advanced-glycation end-products (AGEs). These remain irreversibly bound to macromolecules and can covalently crosslink proximate amino groups1,2. The formation of AGEs on long-lived connective tissue and matrix components accounts largely for the increase in collagen crosslinking that accompanies normal ageing and which occurs at an accelerated rate in diabetes3,4. AGEs can activate cellular receptors and initiate a variety of pathophysiological responses5–9. They modify an appreciable fraction of circulating low-density lipoproteins preventing uptake of these particles by their high-affinity tissue receptors10,11. Advanced glycation has also been implicated in the pathology of Alzheimer's disease12,13. Because AGEs may form by a pathway involving reactive α-dicarbonyl intermediates1,2,14, we investigated a potential pharmacological strategy for selectively cleaving the resultant glucose-derived protein crosslinks. We now describe a prototypic AGE crosslink 'breaker', N-phenacylthiazolium bromide (PTB), which reacts with and cleaves covalent, AGE-derived protein crosslinks. The ability of PTB to break AGE crosslinks in vivo points to the importance of an α-dicarbonyl intermediate in the advanced glycation pathway and offers a potential therapeutic approach for the removal of established AGE crosslinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Njoroge, F. G. & Monnier, V. M. Progr. clin. Biol. Res. 304, 85–107 (1989).

    CAS  Google Scholar 

  2. Bucala, R. & Cerami, A. Adv. Pharmac. 23, 1–34 (1992).

    Article  CAS  Google Scholar 

  3. Monnier, V. M., Kohn, R. R. & Cerami, A. Proc. natn. Acad. Sci. U.S.A. 81, 583–587 (1984).

    Article  CAS  ADS  Google Scholar 

  4. Monnier, V. M. et al. New Engl. J. Med. 314, 403–408 (1986).

    Article  CAS  Google Scholar 

  5. Vlassara, H., Brownlee, M., Manogue, K. R., Dinarello, C. & Pasagian, A. Science 240, 1546–1548 (1988).

    Article  CAS  ADS  Google Scholar 

  6. Esposito, C., Gerlach, H., Brett, J., Stern, D. & Vlassara, H. J. exp. Med. 174, 1387–1407 (1989).

    Article  Google Scholar 

  7. Vlassara, H. et al. Proc. natn. Acad. Sci. U.S.A. 89, 12043–12047 (1992).

    Article  CAS  ADS  Google Scholar 

  8. Doi, T. et al. Proc. natn. Acad. Sci. U.S.A. 89, 2873–2877 (1992).

    Article  CAS  ADS  Google Scholar 

  9. Vlassara, V., Fuh, H., Donnelly, T. & Cybulsky, M. Molec. Med. 1, 447–456 (1995).

    Article  CAS  Google Scholar 

  10. Bucala, R., Makita, Z., Koschinsky, T., Cerami, A. & Vlassara, H. Proc. natn. Acad. Sci. U.S.A. 90, 6434–6438 (1993).

    Article  CAS  ADS  Google Scholar 

  11. Bucala, R. et al. Proc. natn. Acad. Sci. U.S.A. 91, 9441–9445 (1994).

    Article  CAS  ADS  Google Scholar 

  12. Vitek, M. P. et al. Proc. natn. Acad. Sci. U.S.A. 91, 4766–4670 (1994).

    Article  CAS  ADS  Google Scholar 

  13. Smith, M. A. et al. Proc. natn. Acad. Sci. U.S.A. 91, 5710–5714 (1994).

    Article  CAS  ADS  Google Scholar 

  14. Chen, H.-J. & Cerami, A. J. Carbohydr. Chem. 12, 731–742 (1993).

    Article  CAS  Google Scholar 

  15. Estendorfer, S., Ledl, F. & Severin, T. Angew. Chem. intl Ed. Engl. 29, 536–537 (1990).

    Article  Google Scholar 

  16. Vovk, A. I., Murav'eva, I. V. & Yasnikov, A. A. Ukr. Khim. Zh. 51, 521 (1985).

    CAS  Google Scholar 

  17. Ledl, F. & Schleicher, E. Angew. Chem. 29, 565–593 (1990).

    Article  Google Scholar 

  18. Eble, A. S., Thorpe, S. R. & Baynes, J. W. J. biol. Chem. 258, 9406–9412 (1983).

    CAS  PubMed  Google Scholar 

  19. Makita, Z. et al. Science 258, 651–653 (1992).

    Article  CAS  ADS  Google Scholar 

  20. Miyata, T. et al. J. clin. Invest. 92, 1243–1252 (1993).

    Article  CAS  Google Scholar 

  21. Danze, P. M., Tarjoman, A., Rousseaux, J., Fossati, P. & Dautrevaux, M. Clin. chim. Acta. 166, 143–153 (1987).

    Article  CAS  Google Scholar 

  22. Cotra, R. S., Kumar, V. & Robbins, S. L. Robbins Pathologic Basis of Disease 5th edn, 231–238 (Saunders, Philadelphia, 1994).

    Google Scholar 

  23. Ukai, O. K. et al. Yakugaku Zasshi 63, 296 (1943).

    Article  CAS  Google Scholar 

  24. Makita, Z., Vlassara, H., Cerami, A. & Bucala, R. J. biol. Chem. 267, 5133–5138 (1992).

    CAS  PubMed  Google Scholar 

  25. Bochantin, J. & Mays, L. L. Expl Gerontol. 16, 101–106 (1981).

    Article  CAS  Google Scholar 

  26. Itakura, M. et al. Life Sci. 49, 889–897 (1991).

    Article  CAS  Google Scholar 

  27. Stegeman, H. & Stadler, K. Clin. chim. Acta 18, 267–273 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bucala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasan, S., Zhang, X., Zhang, X. et al. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382, 275–278 (1996). https://doi.org/10.1038/382275a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382275a0

  • Springer Nature Limited

This article is cited by

Navigation