Skip to main content

Advertisement

Log in

ICAM-2 redistributed by ezrin as a target for killer cells

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

VERY little is known about the receptors and target molecules involved in natural killer (NK) cell activity. Here we present a model system in which interleukin-2-activated killing by NK cells depends on the intercellular adhesion molecule ICAM-2 and is regulated by the distribution of ICAM-2. The level of ICAM-2 expression in NK-sensitive and resistant cells is similar, but in sensitive cells ICAM-2 is concentrated into bud-like cellular projections known as uropods, whereas in resistant cells it is evenly distributed. The cytoskeletal–membrane linker protein ezrin is also localized in uropods. Transfection of human ezrin into NK-resistant cells induces uropod formation, redistribution of ICAM-2 and ezrin, and sensitizes target cells to interleukin-2-activated killing. These results reveal a new mechanism of target-cell recognition: cytotoxic cells recognize adhesion molecules that are already present on normal cells, but in diseased cells are concentrated into a biologically active cell-surface region by cytoskeletal reorganization. The results also highlight the importance of cytoskeletal interactions in the regulation of ICAM-2-mediated adhesive phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helander, T., Timonen, T., Kalliomäki, P. & Schröder, J. J. Immun. 147, 2063–2067 (1991).

    CAS  PubMed  Google Scholar 

  2. Arpin, M., Algrain, M. & Louvard, D. Curr. Opin. Cell Biol. 6, 136–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Turunen, O. et al. J. biol. Chem. 264, 16727–16732 (1989).

    CAS  PubMed  Google Scholar 

  4. Algrain, M., Turunen, O., Vaheri, A., Louvard, D. & Arpin, M. J. Cell Biol. 120, 129–139 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Kärre, K. Science 267, 978–979 (1995).

    Article  ADS  PubMed  Google Scholar 

  6. Chambers, W. H. & Brissette-Storkus, C. S. Chem. Biol. 2, 429–435 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Trinchieri, G. J. exp. Med. 180, 417–421 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Malnati, M. S. et al. Science 267, 1016–1018 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Colonna, M. & Samaridis, J. Science 268, 405–408 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Gumperz, J. E. & Parham, P. Nature 378, 245–248 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Giorda, R. et al. Science 249, 1298–1300 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Yokoyama, W. M. & Seaman, W. E. A. Rev. Immun. 11, 613–635 (1993).

    Article  CAS  Google Scholar 

  13. Frey, J. L. et al. J. exp. Med. 174, 1527–1536 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Giardina, S. L. et al. J. Immun. 154, 80–87 (1995).

    CAS  PubMed  Google Scholar 

  15. Garni-Wagner, B. A., Purohit, A., Mathew, P. A., Bennet, M. & Kumar, V. J. Immun. 151, 60–70 (1993).

    CAS  PubMed  Google Scholar 

  16. Valiante, N. M. & Trinchieri, G. J. exp. Med. 178, 1397–1406 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Dougherty, G. J., Murdoch, S. & Hogg, N. Eur. J. Immun. 18, 35–39 (1988).

    Article  CAS  Google Scholar 

  18. Dustin, M. L., Carpén, O. & Springer, T. A. J. Immun. 148, 2654–2663 (1992).

    CAS  PubMed  Google Scholar 

  19. Campanero, M. R. et al. J. Cell Biol. 123, 1007–1016 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Bretscher, A. J. Cell Biol. 108, 921–930 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Turunen, O., Wahlström, T. & Vaheri, A. J. Cell Biol. 126, 1445–1453 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Tsukita, S. et al. J. Cell Biol. 126, 391–401 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi, K. et al. J. Cell Biol. 125, 1371–1384 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Hanzel, D., Reggio, H., Bretscher, A., Forte, J. G. & Mangeat, P. EMBO J. 10, 2363–2373 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gary, R. & Bretscher, A. Proc. natn. Acad. Sci. U.S.A. 90, 10846–10850 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Andréoli, C., Martin, M., Le Borgne, R., Reggio, H. & Mangeat, P. J. Cell Sci. 107, 2509–2521 (1994).

    PubMed  Google Scholar 

  27. Martin, M. et al. J. Cell Biol. 128, 1081–1093 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Pakkanen, R., Bonsdorff, C.-H., Turunen, O., Wahlström, T. & Vaheri, A. Eur. J. Cell Biol. 46, 435–443 (1988).

    CAS  PubMed  Google Scholar 

  29. Julius, M. H., Simpson, E. & Herzenberg, L. A. Eur. J. Immun. 3, 645–649 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helander, T., Carpén, O., Turunen, O. et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature 382, 265–268 (1996). https://doi.org/10.1038/382265a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382265a0

  • Springer Nature Limited

This article is cited by

Navigation