Skip to main content
Log in

The boron isotope ratio in the interstellar medium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

OBSERVATIONS of the abundances of elements provide insight into their production and distribution. The production of light elements (in particular, lithium, beryllium and boron) is dominated by spallation reactions1, in which cosmic rays break apart more massive nuclei. Models2,3 suggest that the 11B/10B ratio should be about 2.5, but the observed ratio in the Solar System is about 4 (refs 4,5). This has led to the suggestion5 that the pre-solar nebula was subjected to bombardment by low-energy Galactic cosmic rays, leading to an overproduction of 11B (ref. 6). Until now, it has not been possible to measure the 11B/10B ratio in the interstellar medium, because the lines are very weak. Here we present a spectroscopic measurement of the 11B/10B ratio in the interstellar gas lying between the Earth and the star δ Scorpii, made using the Hubble Space Telescope. Our measured ratio, 3.4+1.3−0.6, is comparable to the meteoritic value5, but somewhat lower. Further measurements will be needed to establish whether the ratio reported here is characteristic of the interstellar medium in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reeves, H., Fowler, W. A. & Hoyle, F. Nature 226, 727–729 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Meneguzzi, M., Audouze, J. & Reeves, H. Astr. Astrophys. 15, 337–359 (1971).

    ADS  CAS  Google Scholar 

  3. Reeves, H. A. Rev. Astr. Astrophys. 12, 437–469 (1974).

    Article  ADS  Google Scholar 

  4. Anders, E. & Grevesse, N. Geochim. cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Chaussidon, M. & Robert, F. Nature 374, 337–339 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Meneguzzi, M. & Reeves, H. Astr. Astrophys. 40, 99–110 (1975).

    ADS  CAS  Google Scholar 

  7. Diplas, A. & Savage, B. D. Astrophys. J. Suppl. 93, 211–228 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Savage, B. D., Bohlin, R. C., Drake, J. F. & Budich, W. Astrophys. J. 216, 291–307 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Cardelli, J. A. & Ebbets, D. C. in Calibrating Hubble Space Telescope (eds Blades, J. C. and Osmer, S. J.) 322–331 (Space Telescope Science Inst, Baltimore, 1994).

    Google Scholar 

  10. Brandt, J. C. et al. Publs. astr. Soc. Pacif. 106, 890–908 (1994).

    Article  ADS  Google Scholar 

  11. Jönsson, P., Johansson, S. G. & Froese Fischer, C. Astrophys. J. 429, L45–L48 (1994).

    Article  ADS  Google Scholar 

  12. Hobbs, L. M. Astrophys. J. 191, 381–393 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Cardelli, J. A., Savage, B. D. & Ebbets, D. C. Astrophys. J. 383, L23–L27 (1991).

  14. Savage, B. D. & Sembach, K. R. Astrophys. J. 379, 245–259 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Lambert, D. L., Sheffer, Y., Gilliland, R. L. & Federman, S. R. Astrophys. J. 420, 756–771 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Meneguzzi, M. & York, D. G. Astrophys. J. 235, L111–L114 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Federman, S. R., Sheffer, Y., Lambert, D. L. & Gilliland, R. L. Astrophys. J. 413, L51–L54 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Jura, M., Meyer, D. M., Hawkins, I. & Cardelli, J. A. Astrophys. J. 456, 598–601 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Boesgaard, A. M. & Heacox, W. D. Astrophys. J. 226, 888–896 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Lemke, M., Lambert, D. L. & Edvardsson, B. Publs. astr. Soc. Pacif. 105, 468–473 (1993).

    Article  ADS  Google Scholar 

  21. Kohl, J. L., Parkinson, W. H. & Withbroe, G. L. Astrophys. J. 212, L101–L104 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Learner, R. C. M. & Harris, C. J. Astrophys. J. 320, 926–927 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Zhai, M. & Shaw, D. M. Meteoritics 29, 607–615 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Bloemen, H. et al. Astr. Astrophys. 281, L5–L8 (1994).

    ADS  CAS  Google Scholar 

  25. Cassé, M., Lehoucq, R. & Vangioni-Flam, E. Nature 373, 318–319 (1995).

    Article  ADS  Google Scholar 

  26. Reeves, H. & Prantzos, N. in Light Element Abundances (ed. Crane, P.) 382–388 (Springer, Berlin, 1995).

    Book  Google Scholar 

  27. Ramaty, R., Kozlovsky, B. & Lingenfelter, R. E. Astrophys. J. 456, 525–540 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Vangioni-Flam, E., Cassé, M., Fields, B. D. & Olive, K. A. Astrophys. J. (in the press).

  29. Gibner, P. S., Mewaldt, R. A., Schindler, S. M., Stone, E. C. & Webber, W. R. Astrophys. J. 391, L89–L92 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Beckman, J. E. & Casuso, E. in Light Element Abundances (ed. Crane, P.) 105–117 (Springer, Berlin, 1995).

    Book  Google Scholar 

  31. Johansson, S. G., Litzén, U., Kasten, J. & Kock, M. Astrophys, J. 403, L25–L28 (1993).

    Article  ADS  CAS  Google Scholar 

  32. Morton, D. C. Astrophys. J. Suppl. 77, 119–202 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Federman, S., Lambert, D., Cardelli, J. et al. The boron isotope ratio in the interstellar medium. Nature 381, 764–766 (1996). https://doi.org/10.1038/381764a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381764a0

  • Springer Nature Limited

This article is cited by

Navigation