Skip to main content
Log in

Estimate of the genomic mutation rate deleterious to overall fitness in E. coll

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MUTATIONS are a double-edged sword: they are the ultimate source of genetic variation upon which evolution depends, yet most mutations affecting fitness (viability and reproductive success) appear to be harmful1. Deleterious mutations of small effect can escape natural selection, and should accumulate in small populations2–4. Reduced fitness from deleterious-mutation accumulation may be important in the evolution of sex5–7, mate choice8,9, and diploid life-cycles10, and in the extinction of small populations11,12. Few empirical data exist, however. Minimum estimates of the genomic deleterious-mutation rate for viability in Drosophila melanogaster are surprisingly high1,13,14, leading to the conjecture that the rate for total fitness could exceed 1.0 mutation per individual per generation5,6. Here we use Escherichia coli to provide an estimate of the genomic deleterious-mutation rate for total fitness in a microbe. We estimate that the per-microbe rate of deleterious mutations is in excess of 0.0002.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crow, J. F. & Simmons, M. J. in The Genetics and Biology of Drosophila Vol. 3C (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 1–35 (Academic, London, 1983).

    Google Scholar 

  2. Charlesworth, D., Morgan, M. T. & Charlesworth, B. Genet. Res. Camb. 61, 39–56 (1993).

    Article  Google Scholar 

  3. Haigh, J. Theor. Pop. Biol. 14, 251–267 (1978).

    Article  CAS  Google Scholar 

  4. Lynch, M. & Gabriel, W. Evolution 44, 1725–1737 (1990).

    Article  Google Scholar 

  5. Muller, H. J. Mut. Res. 1, 1–9 (1964).

    Article  Google Scholar 

  6. Kondrashov, A. S. Nature 336, 435–440 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Charlesworth, B. Genet. Res. Camb. 55, 199–221 (1990).

    Article  CAS  Google Scholar 

  8. Charlesworth, B. in Sexual Selection: Testing the Alternatives (eds Bradbury, J. W. & Andersson, M. B.) 21–40 (Wiley, Chichester, 1987).

    Google Scholar 

  9. Kirkpatrick, M. & Ryan, M. J. Nature 350, 33–38 (1991).

    Article  ADS  Google Scholar 

  10. Jenkins, C. D. & Kirkpatrick, M. Evolution 49, 512–520 (1995).

    Article  Google Scholar 

  11. Lynch, M., Burger, R., Butcher, D. & Gabriel, W. J. Heredity 84, 339–344 (1993).

    Article  CAS  Google Scholar 

  12. Lande, R. Evolution 48, 1460–1469 (1994).

    Article  Google Scholar 

  13. Mukai, T. in Quantitative Genetic Variation (eds Thompson, J. N. & Thoday, J. M.) 177–196 (Academic, New York, 1979).

    Book  Google Scholar 

  14. Keightley, P. D. Genetics 138, 1315–1322 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hartl, D. L., Moriyama, E. N. & Sawyer, S. A. Genetics 138, 227–234 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Drake, J. W. Proc. natn. Acad. Sci. U.S.A. 88, 7160–7164 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Am. Nat. 138, 1315–1341 (1991).

    Article  Google Scholar 

  18. Lenski, R. E. & Travisano, M. Proc. natn. Acad. Sci. U.S.A. 91, 6808–6814 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Herdman, M. in The Evolution of Genome Size (ed. Cavalier-Smith, T.) 37–68 (Wiley, London, 1985).

    Google Scholar 

  20. Cavalier-Smith, T. in The Evolution of Genome Size (ed. Cavalier-Smith, T.) 69–104 (Wiley, London, 1985).

    Google Scholar 

  21. Lindsley, D. L. & Tokuyasy, K. T. in The Genetics and Biology of Drosophila (eds Asburner, M. & Wright, T.) 226–294 (Academic, New York, 1980).

    Google Scholar 

  22. Carlton, B. C. & Brown, B. J. in Manual of Methods for General Bacteriology (ed. Gerhardt, P.) 222–242 (Am. Soc. Microbiol., Washington DC, 1981).

    Google Scholar 

  23. Bateman, A. J. Int. J. Rad. Biol. 170–180 (1959).

  24. Lynch, M. in Ecological Genetics (ed. Real, L.) 86–108 (Princeton Univ. Press, Princeton, New Jersey, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kibota, T., Lynch, M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coll. Nature 381, 694–696 (1996). https://doi.org/10.1038/381694a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381694a0

  • Springer Nature Limited

This article is cited by

Navigation