Skip to main content
Log in

Synthesis and structure of a layered titanosilicate catalyst with five-coordinate titanium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

TITANIUM occurs widely in the Earth's crust, traces of it being present in most rocks, soils and clays. It is estimated that titanosilicate minerals alone number more than 100; but, remarkably, in only one of these does the Ti(IV) ion take up fivefold coordination. This is in fresnoite1 (Ba2TiSi2O8), which contains square-pyramidal TiO5 polyhedra. In the course of a programme2–11 to produce new microporous and mesoporous solid catalysts, we have discovered an unusual non-centrosymmetric, tetragonal layered solid (Na4Ti2Si8O22·4H2O), designated JDF-L1, which promises to have interesting applications in materials chemistry. This material contains five-coordinate Ti(IV) ions in the form of TiO5 square pyramids in which each of the vertices of the base is linked to SiO4 tetrahedra [TiO·O4(SiO3)4] to form continuous sheets. The structure was solved by applying ab initio methods to data obtained by X-ray absorption spectroscopy and powder X-ray diffraction. The interlamellar Na+ ions of JDF-L1 are replaceable by protonated amines, and after treatment with a mixture of dilute acid and hydrogen peroxide the parent solid selectively oxidizes phenol to quinone. These results indicate that the material should have useful catalytic, intercalation and ion-exchange properties analogous to those of aluminosilicate clays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markgraf, S. A., Halliyal, A., Bhalla, A. S., Newnham, R. E. & Prewitt, C. T. Ferroelectrics 62, 17–26 (1985).

    Article  CAS  Google Scholar 

  2. Jones, R. H. et al. J. chem. Soc., chem. Comm. 1170–1172 (1990).

  3. Jones, R. H. et al. J. chem. Soc., chem. Comm. 1520–1522 (1991).

  4. Chippindale, A. M. et al. J. Solid. St. Chem. 96, 199–210 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Chen, J. S. et al. J. Solid. St. Chem. 103, 519–522 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Jones R. H., Chippindale, A. M., Natarajan, S. & Thomas, J. M. J. chem. Soc., chem. Comm. 565–566 (1994).

  7. Thomas, J. M. et al. J. chem. Soc., chem. Comm. 929–931 (1992).

  8. Chippindale, A. M., Natarajan, S., Thomas, J. M. & Jones, R. H. J. Solid. St. Chem. 111, 18–25 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Huo, Q. S. et al. J. chem. Soc., chem. Comm. 875–876 (1992).

  10. Sankar, G. et al. J. chem. Soc., chem. Comm. 2279–2280 (1994).

  11. Maschmeyer, T., Rey, F., Sankar, G. & Thomas, J. M. Nature 378, 159–162 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Taramasso, M. & Notari, B. US Patent No. 4410501 (1983).

  13. Blasco, T., Camblore, M. A., Corma, A. & Perez-Pariente, J. J. Am. chem Soc. 115, 11806–11813 (1993).

    Article  CAS  Google Scholar 

  14. Kim, G. J., Cho, B. R. & Kim, J. H. Catal. Lett. 22, 259–270 (1993).

    Article  CAS  Google Scholar 

  15. Tanev, P., Chibwe, M. & Pinnavaia, T. Nature 368, 321–323 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Thomas, J. M. Nature 368, 289–290 (1994).

    Article  ADS  Google Scholar 

  17. Corma, A., Navarro, M. T. & Perez-Pariente, J. J. chem. Soc., chem. Comm. 147–148 (1994).

  18. Anderson, M. W. et al. Nature 367, 347–351 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Sankar, G., et al. J. phys. Chem. 100, 449–452 (1996).

    Article  CAS  Google Scholar 

  20. Poojary, D. M., Cahill, R. A. & Clearfield, A. Chem. Mater. 6, 2364–2368 (1994).

    Article  CAS  Google Scholar 

  21. Harrison, W. T. A., Gier, T. E. & Stucky, G. D. Zeolites 15, 408–412 (1995).

    Article  CAS  Google Scholar 

  22. Kraushaar-Czarnetski, B., Stork, W. H. J. & Dogerton, R. J. Inorg. Chem. 32, 5029–5033 (1993).

    Article  Google Scholar 

  23. Barrett, P. A. & Jones, R. H. J. chem. Soc., chem. Comm. 1979–1981 (1995).

  24. Waychunas, G. A. Am. Miner. 72, 89–101 (1987).

    CAS  Google Scholar 

  25. Werner, P. E., Eriksson, L. & Westdahl, M. J. appl. Crystallogr. 18, 367–370 (1985).

    Article  CAS  Google Scholar 

  26. Murray, A. D., Fitch, A. N. & Jouannaux, A. MPROFIL program for LeBail Decomposition of powder patterns (Daresbury Computing Service, 1990).

    Google Scholar 

  27. LeBail, A., Duroy, H. & Fourquet, J. L. Mater. Res. Bull. 23, 447–452 (1988).

    Article  CAS  Google Scholar 

  28. Sheldrick, G. M. SHELXS86 User Guide (Univ. Göttingen, 1986).

    Google Scholar 

  29. Rietveld, H. M. J. appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  30. Wright, P. A., Thomas, J. M., Millward, G. R., Ramadas, S. & Barri, S. A. I. J. chem. Soc., Chem. Comm. 1117–1119 (1985).

  31. Meier, W. M. & Olson, D. H. Atlas of Zeolite Structure Types (Butterworth-Heinemann, London, 1992).

    Google Scholar 

  32. Halliyal, A., Bhallia, A. S., Markgaf, S. A., Cross, L. E. & Newnham, R. E. Ferroelectrics 62, 27–38 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, M., Sankar, G., Thomas, J. et al. Synthesis and structure of a layered titanosilicate catalyst with five-coordinate titanium. Nature 381, 401–404 (1996). https://doi.org/10.1038/381401a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381401a0

  • Springer Nature Limited

This article is cited by

Navigation