Skip to main content

Advertisement

Log in

Increased UV-B penetration in a lake owing to drought-induced acidification

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CLIMATE change, acid deposition and increasing solar ultraviolet irradiance1 have all combined to produce marked effects on lake waters and their ecosystems. Schindler et al.2 have shown that both climate warming and lake acidification have led to decreases in dissolved organic carbon concentrations in North American boreal lakes, resulting in a markedly increased exposure of the upper water column to solar ultraviolet radiation. Here we report ten years of observations of rainfall and lake chemistry at Swan Lake, Canada, that suggest that a fall in dissolved organic carbon concentrations can also occur by a different combination of climate change and acidification. In this boreal fresh water, a drought decreased lakewater levels, thus exposing to the atmosphere littoral sediments containing reduced sulphur from the previous atmospheric deposition of industrial sulphur dioxide into the lake and its catchment. This exposure caused a reoxidation of sediment sulphur, resulting in a remobilization of acid into the lake water, and thus a decrease in dissolved organic carbon concentrations sufficient to increase by three-fold the depth to which ultraviolet radiation can penetrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr, J. B. & McElroy, C. T. Science 262, 1032–1034 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Schindler, D. W., Jefferson Curtis, P., Parker, B. R. & Stainton, M. P. Nature 379, 705–708 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Keller, W. Can. J. Fish. Aquat. Sci. (Suppl. 1) 49, 3–7 (1992).

    Article  Google Scholar 

  4. Dixit, S. S., Dixit, A. S. & Smol, J. P. Can. J. Fish, aquat Sci. 46, 1309–1312 (1989).

    Article  Google Scholar 

  5. Dillon, P. J., Reid, R. A. & Girard, R. Wat. Air Soil Pollut. 31, 59–65 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Keller, W., Pitblaco, J. R. & Carbone, J. Can. J. Fish, aquat. Sci. (suppl. 1) 49, 25–32 (1992).

    Article  CAS  Google Scholar 

  7. Vandermeulen, H., Jackson, M. B., Rodrigues, A. & Keller, W. Crypt. Bot. 3, 123–132 (1993).

    Google Scholar 

  8. Maclsaac, H. J., Keller, W., Hutchinson, T. C. & Yan, N. D. Wat. Air Soil Pollut. 31, 791–797 (1986).

    Article  ADS  Google Scholar 

  9. Yan, N. D., Keller, W., Maclsaac, H. J. & McEachern, L. J. Ecol. Applic. 1, 52–65 (1991).

    Article  Google Scholar 

  10. Keller, W. & Pitblado, J. R. Wat. Air. Soil Pollut. 29, 285–296 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Dillon, P. J. & LaZerte, B. D. Envir. Pollut. 77, 211–217 (1992).

    Article  CAS  Google Scholar 

  12. Bayley, S. E., Behr, R. S. & Kelley, C. A. Wat. Air. Soil Pollut. 31, 104–114 (1986).

    ADS  Google Scholar 

  13. Bodo, B. & Dillon, P. J. in Time Series Analysis in Hydrology and Environmental Engineering (eds Hipel, K. W., McLeod, A. I., Panu, U. S. & Singh, V. P.) 285–298 (Kluwer, Boston, 1994).

    Google Scholar 

  14. Kelso, J. R. M., Shaw, M. A. & Jeffries, D. S. Envir. Pollut. 78, 65–71 (1992).

    Article  CAS  Google Scholar 

  15. Schindler, D. W. et al. Proc. R. Soc. Edinb. 97B, 193–226 (1991).

    Google Scholar 

  16. Dillon, P. J., Reid, R. & de Grosbois, E. Nature 329, 45–48 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Effler, S. W., Schafran, G. C. & Driscoll, C. T. Can. J. Fish, aquat. Sci. 42, 1707–1711 (1985).

    Article  Google Scholar 

  18. Schindler, D. W. et al. Hydrobiol. 229, 1–22 (1992).

    Article  CAS  Google Scholar 

  19. Almer, B., Dickson, W., Ekström, C. & Hörnström, E. in Sulphur Pollution in the Aquatic Ecosystem (ed. Nriagu, J.) 271–311 (Wiley, New York, 1978).

    Google Scholar 

  20. Spry, D. J. & Wiener, J. G. Envir. Pollut. 71, 243–304 (1991).

    Article  CAS  Google Scholar 

  21. Helmer, E. H., Urban, N. R. & Eisenreich, S. J. Biogeochemistry 9, 247–276 (1990).

    Article  CAS  Google Scholar 

  22. Devito, K. J., Dillon, P. J. & LaZerte, B. D. Biogeochemistry 8, 185–204 (1989).

    Article  CAS  Google Scholar 

  23. Scully, N. M. & Lean, D. R. S. Arch. Hydrobiol. Beih., Ergebn. Limnol. 45, 135–144 (1994).

    Google Scholar 

  24. Manabe, S. & Wetherald, R. T. Science 232, 626–628 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Husar, R. B., Sullivan, T. J. & Charles, D. F. in Acidic Deposition and Aquatic Ecosystems: Regional Case Studies (ed. Charles, D. F.) 65–82 (Springer, New York, 1991).

    Book  Google Scholar 

  26. Jeffries, D. S., Lam, D. C. L., Wong, I. & Bloxam, R. M. Envir. Monitor. Assess. 23, 99–113 (1992).

    CAS  Google Scholar 

  27. Stolarski, R. S., Bloomfield, P., McPeters, R. D. & Herman, J. R. Geophys. Res. Lett. 18, 1015–1018 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Handbook of analytical methods for environmental samples (Lab. Services Branch Rep., Ontario Ministry of the Environment and Energy, Toronto, 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, N., Keller, W., Scully, N. et al. Increased UV-B penetration in a lake owing to drought-induced acidification. Nature 381, 141–143 (1996). https://doi.org/10.1038/381141a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381141a0

  • Springer Nature Limited

This article is cited by

Navigation