Skip to main content
Log in

Observation of 'scarred' wavefunctions in a quantum well with chaotic electron dynamics

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

QUALITATIVE insight into the properties of a quantum-mechanical system can be gained from the study of the relationship between the system's classical newtonian dynamics, and its quantum dynamics as described by the Schrödinger equation. The Bohr–Sommerfeld quantization scheme—which underlies the historically important Bohr model for hydrogen-like atoms—describes the relationship between the classical and quantum-mechanical regimes, but only for systems with stable, periodic or quasi-periodic orbits1. Only recently has progress been made in understanding the quantization of systems that exhibit non-periodic, chaotic motion. The spectra of quantized energy levels for such systems are irregular, and show fluctuations associated with unstable periodic orbits of the corresponding classical system1–3. These orbits appear as 'scars'—concentrations of probability amplitude—in the wavefunction of the system4. Although wavefunction scarring has been the subject of extensive theoretical investigation5–10, it has not hitherto been observed experimentally in a quantum system. Here we use tunnel-current spectroscopy to map the quantum-mechanical energy levels of an electron confined in a semiconductor quantum well in a high magnetic field10–13. We find clear experimental evidence for wavefunction scarring, in full agreement with theoretical predictions10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutzwiller, M. C. Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Book  Google Scholar 

  2. Berry, M. V. Proc. R. Soc. Lond. A 413, 183–198 (1987).

    Article  ADS  Google Scholar 

  3. Jensen, R. V. Nature 355, 311–318 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Heller, E. J. Phys. Rev. Lett. 53, 1515–1518 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  5. Bogomolny, E. B. Physica D31, 169–189 (1988).

    MathSciNet  Google Scholar 

  6. Berry, M. V. Proc. R. Soc. Lond. A 423, 219–231 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Agam, O. & Fishman, S. Phys. Rev. Lett. 73, 806–809 (1994).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Antonsen, T. M. Jr, Ott, E., Chen, Q. & Oerter, R. N. Phys. Rev. E51, 111–121 (1995).

    ADS  CAS  Google Scholar 

  9. Müller, K. & Wintgen, D. J. Phys. B: Atom. Molec. Opt. Phys. 27, 2693–2718 (1994).

    Article  ADS  Google Scholar 

  10. Fromhold, T. M. et al. Phys. Rev. Lett. 75, 1142–1145 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Fromhold, T. M. et al. Phys. Rev. Lett. 72, 2608–2611 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Fromhold, T. M. et al. Phys. Rev. B 51, 18029–18032 (1995).

    Article  CAS  Google Scholar 

  13. Shepelyansky, D. L. & Stone, A. D. Phys. Rev. Lett. 74, 2098–2101 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Bardeen, J. Phys. Rev. Lett. 6, 57–59 (1961).

    Article  ADS  CAS  Google Scholar 

  15. Leadbeater, M. L., Sheard, F. W. & Eaves, L. Semicond. Sci. Technol. 6, 1021–1024 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Fromhold, T. M., Sheard, F. W. & Toombs, G. A. Proc. 20th Int Conf. on the Physics of Semiconductors 1250–1253 (World Scientific, Singapore, 1990).

    Google Scholar 

  17. Shi, J. M., Peeters, F. M. & Devreese, J. T. Phys. Rev. B48, 5202–5216 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Levi, A. F. J., Späh, R. J. & English, J. H. Phys. Rev. B36, 9402–9405 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Sridhar, S. Phys. Rev. Lett. 67, 785–788 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Sheard, F. W. & Toombs, G. A. Appl. Phys. Lett. 52, 1228–1230 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, P., Fromhold, T., Eaves, L. et al. Observation of 'scarred' wavefunctions in a quantum well with chaotic electron dynamics. Nature 380, 608–610 (1996). https://doi.org/10.1038/380608a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380608a0

  • Springer Nature Limited

This article is cited by

Navigation