Skip to main content
Log in

Organ targeting In vivo using phage display peptide libraries

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PREFERENTIAL homing of tumour cells1,2 and leukocytes3,4 to specific organs indicates that tissues carry unique marker molecules accessible to circulating cells. Organ-selective address molecules on endothelial surfaces have been identified for lymphocyte homing to various lymphoid organs and to tissues undergoing inflammation5–8, and an endothelial marker responsible for tumour homing to the lungs has also been identified9. Here we report a new approach to studying organ-selective targeting based on in vivoscreening of random peptide sequences. Peptides capable of mediating selective localization of phage to brain and kidney blood vessels were identified, and showed up to 13-fold selectivity for these organs. One of the peptides displayed by the brain-localizing phage was synthesized and shown to specifically inhibit the localization of the homologous phage into the brain. When coated onto glutaraldehyde-fixed red blood cells, the peptide caused selective localization of intravenously injected cells into the brain. These peptide sequences represent the first step towards identifying selective endothelial markers, which may be useful in targeting cells, drugs and genes into selected tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fidler, I. J. & Hart, I. R. Science 217, 998–1003 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Johnson, R. C. et al. Cancer Res. 51, 394–399 (1991).

    CAS  PubMed  Google Scholar 

  3. Springer, T. A. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  4. Salmi, M. et al. Proc. natn. Acad. Sci. U.S.A. 89, 11436–11440 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A. & Seed, B. Science 243, 1160–1165 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Siegelman, M. H., Rijn, M. & Weissman, I. L. Science 243, 1165–1171 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Cepek, K. L. et al. Nature 372, 190–193 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Rosen, S. D. & Bertozzi, C. R. Curr. Opin. Cell Biol. 6, 663–673 (1994).

    Article  CAS  Google Scholar 

  9. Johnson, R. C., Zhu, D., Augustin-Voss, H. G. & Pauli, B. U. J. Cell Biol. 121, 1423–1432 (1993).

    Article  CAS  Google Scholar 

  10. Smith, G. P. & Scott, J. K. Meth. Enzym. 217, 228–257 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Koivunen, E., Wang, B. & Ruoslahti, E. J. Cell Biol. 124, 373–380 (1994).

    Article  CAS  Google Scholar 

  12. Koivunen, E., Wang, B., Dickinson, C. D. & Ruoslahti, E. Meth. Enzym. 245, 346–369 (1994).

    Article  CAS  Google Scholar 

  13. Pasqualini, R., Koivunen, E. & Ruoslahti, E. J. Cell Biol. 130, 1189–1196 (1995).

    Article  CAS  Google Scholar 

  14. Brooks, P. C. et al. Cell 79, 1157–1164 (1994).

    Article  CAS  Google Scholar 

  15. Rak, J. W., St. Croix, B. D. & Kerbel, R. S. Anticancer Drugs 6, 3–18 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasqualini, R., Ruoslahti, E. Organ targeting In vivo using phage display peptide libraries. Nature 380, 364–366 (1996). https://doi.org/10.1038/380364a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380364a0

  • Springer Nature Limited

This article is cited by

Navigation