Skip to main content
Log in

Orientation selectivity of thalamic input to simple cells of cat visual cortex

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MORE than 30 years after Hubel and Wiesel1 first described orientation selectivity in the mammalian visual cortex, the mechanism that gives rise to this property is still controversial. Hubel and Wiesel1 proposed a simple model for the origin of orientation tuning, in which the circularly symmetrical receptive fields of neurons in the lateral geniculate nucleus that excite a cortical simple cell are arranged in rows. Since this model was proposed, several experiments2–6 and neuronal simulations7,8 have suggested that the connectivity between the lateral geniculate nucleus and the cortex is not well organized in an orientation-specific fashion, and that orientation tuning arises instead from extensive interactions within the cortex. To test these models we have recorded visually evoked synaptic potentials in simple cells while cooling the cortex9, which largely inactivates the cortical network, but leaves geniculate synaptic input functional. We report that the orientation tuning of these potentials is almost unaffected by cooling the cortex, in agreement with Hubel and Wiesel's original proposal1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Blakemore, C. & Tobin, E. A. Expl Brain Res. 15, 439–440 (1972).

    Article  CAS  Google Scholar 

  3. Creutzfeldt, O. D., Kuhnt, U. & Benevento, L. A. Expl Brain Res. 21, 251–274 (1974).

    CAS  Google Scholar 

  4. Sillito, A. M. J. Physiol., Lond. 250, 305–329 (1975).

    Article  CAS  Google Scholar 

  5. Crook, J. M., Eysel, U. T. & Machemer, H. F. Neuroscience 40, 1–12 (1991).

    Article  CAS  Google Scholar 

  6. Kisvarday, Z. F., Kim, D. S., Eysel, U. T. & Bonhoeffer, T. Eur. J. Neurosci. 6, 1619–1632 (1994).

    Article  CAS  Google Scholar 

  7. Douglas, R. J. & Martin, K. A. C. J. Physiol., Lond. 440, 735–769 (1991).

    Article  CAS  Google Scholar 

  8. Somers, D. C., Nelson, S. B. & Sur, M. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  9. Kalil, R. E. & Chase, R. J. Neurophysiol. 33, 459–474 (1970).

    Article  CAS  Google Scholar 

  10. Gilbert, C. D. & Kelly, J. P. J. comp. Neurol. 163, 81–105 (1975).

    Article  CAS  Google Scholar 

  11. Ferster, D. & Lindström, S. J. Physiol., Lond. 367, 233–252 (1985).

    Article  CAS  Google Scholar 

  12. LeVay, S. & Gilbert, C. D. Brain Res. 113, 1–19 (1976).

    Article  CAS  Google Scholar 

  13. Gilbert, C. D. & Wiesel, T. N. Nature 280, 120–125 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol. 28, 229–289 (1965).

    Article  CAS  Google Scholar 

  15. Shatz, C. J. J. comp. Neurol. 173, 497–518 (1977).

    Article  CAS  Google Scholar 

  16. Ferster, D. J. Neurosci. 6, 1284–1301 (1986).

    Article  CAS  Google Scholar 

  17. Douglas, R. J., Martin, K. A. C. & Whitteridge, D. Nature 332, 642–644 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Ferster, D. & Jagadeesh, B. J. Neurosci. 12, 1262–1274 (1992).

    Article  CAS  Google Scholar 

  19. Nelson, S., Toth, L., Sheth, B. & Sur, M. Science 265, 774–777 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. & Suarez, H. H. Science 269, 981–985 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Saul, A. B. & Humphrey, A. L. J. Neurophysiol. 64, 206–224 (1990).

    Article  CAS  Google Scholar 

  22. Maex, R. thesis, Katholieke Univ. Leuven (1994).

  23. Suarez, H., Koch, C. & Douglas, R. J. Neurosci. 15, 6700–6719 (1995).

    Article  CAS  Google Scholar 

  24. Tanaka, K. J. Neurophysiol. 49, 1303–1318 (1983).

    Article  CAS  Google Scholar 

  25. Reid, R. C. & Alonso, J.-M. Nature 378, 281–284 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Jones, J. P. & Palmer, L. A. J. Neurophysiol. 58, 1187–1211 (1987).

    Article  CAS  Google Scholar 

  27. Chapman, B., Zahs, K. R. & Stryker, M. P. J. Neurosci. 11, 1347–1358 (1991).

    Article  CAS  Google Scholar 

  28. Chapman, B. & Stryker, M. P. J. Neurosci. 13, 5251–5262 (1993).

    Article  CAS  Google Scholar 

  29. Miller, K. D. J. Neurosci. 14, 409–441 (1994).

    Article  CAS  Google Scholar 

  30. Schwark, H. D., Malpeli, J. G., Weyand, T. G. & Lee, C. J. Neurophysiol. 56, 1074–1087 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996). https://doi.org/10.1038/380249a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380249a0

  • Springer Nature Limited

This article is cited by

Navigation