Skip to main content

Advertisement

Log in

Rapid climate changes in the tropical Atlantic region during the last deglaciation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE climate system is capable of changing abruptly from one stable mode to another1–3. Rapid climate oscillations—in particular the Younger Dryas cold period during the last deglaciation—have long been recognized from records throughout the North Atlantic region4–14, and the distribution of these records at mostly high latitudes suggests that the changes were caused by rapid reorganizations of the North Atlantic thermohaline circulation6,8,10,15. But events far from the North Atlantic region that are synchronous with the Younger Dryas16–19 raise the possibility that a more global forcing mechanism was responsible20. Here we present high-resolution records of laminated sediments of the last deglaciation from the Cariaco basin (tropical Atlantic Ocean) which show many abrupt sub-decade to century-scale oscillations in surface-ocean biological productivity that are synchronous with climate changes at high latitudes. We attribute these productivity variations to changes in or duration of up-welling rate (and hence nutrient supply) caused by changes in trade-wind strength, which is in turn influenced by the thermo-haline circulation through its effect on sea surface temperature6,21. Abrupt climate changes in the tropical Atlantic during the last deglaciation are thus consistent with a North Atlantic circulation forcing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manabe, S. & Stouffer, R. J. J. Clim. 1, 841–866 (1988).

    Article  ADS  Google Scholar 

  2. Broecker, W. S. & Denton, G. H. Geochim. cosmochim. Acta 53, 2465–2501 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Stocker, T. F. & Wright, D. G. Nature 351, 729–732 (1991).

    Article  ADS  Google Scholar 

  4. Ruddimen, W. F. & Mclntyre, A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 35, 145–214 (1981).

    Article  Google Scholar 

  5. Siegenthaler, U., Eicher, U., Oeschger, H. & Dansgaard, W. Ann. Glaciol. 5, 149–152 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Rind, D., Peteet, D., Broecker, W. S., Mclntyre, A. & Ruddiman, W. Clim. Dyn. 1, 3–33 (1986).

    Article  Google Scholar 

  7. Paus, A. Boreas 17, 113–139 (1987).

    Article  Google Scholar 

  8. Broecker, W. S. et al. Paleoceanography 3, 1–19 (1988).

    Article  ADS  Google Scholar 

  9. Dansgaard, W., White, J. W. C. & Johnsen, S. J. Nature 339, 532–534 (1989).

    Article  ADS  Google Scholar 

  10. Lehman, S. J. & Keigwin, L. D. Nature 356, 757–762 (1992).

    Article  ADS  Google Scholar 

  11. Alley, R. B. et al. Nature 362, 527–529 (1993).

    Article  ADS  Google Scholar 

  12. Koç-Karpuz, N. & Jansen, E. Paleoceanography 7, 499–520 (1992).

    Article  ADS  Google Scholar 

  13. Bond, G. et al. Nature 365, 143–147 (1993).

    Article  ADS  Google Scholar 

  14. Duplessy, J. C. et al. Nature 358, 485–488 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Broecker, W. S. et al. Paleoceanography 5, 469–477 (1990).

    Article  ADS  Google Scholar 

  16. Linsley, B. K. & Thunell, R. C. Paleoceanography 5, 1025–1039 (1990).

    Article  ADS  Google Scholar 

  17. Peteet, D. et al. Eos 75, 587–590 (1993).

    Google Scholar 

  18. Denton, G. H. & Hardy, C. H. Science 264, 1434–1437 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Thompson, L. G. et al. Science 269, 46–50 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Broecker, W. S. Nature 372, 421–424 (1995).

    Article  ADS  Google Scholar 

  21. Overpeck, J. T., Peterson, L. C., Kipp, N., Imbrie, J. & Rind, D. Nature 338, 553–557 (1989).

    Article  ADS  Google Scholar 

  22. Peterson, L. C., Overpeck, J. T., Kipp, N. G. & Imbrie, J. Paleoceanography 6, 99–119 (1991).

    Article  ADS  Google Scholar 

  23. Hughen, K. A., Overpeck, J. T., Peterson, L. C. & Anderson, R. F. in Paleoclimatology and Paleoceanography from Laminated Sediments (ed. Kemp, A. E. S.) (The Geological Society, London, in the press).

  24. Dansgaard, W. et al. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  25. Johnsen, S. J. et al. Nature 359, 311–313 (1992).

    Article  ADS  Google Scholar 

  26. Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Nature 366, 552–554 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Mayewski, P. A. Science 263, 1747–1751 (1993).

    Article  ADS  Google Scholar 

  28. Taylor, K. C. et al. Nature 361, 432–436 (1993).

    Article  ADS  Google Scholar 

  29. Stuiver, M. & Reimer, P. J. Radiocarbon 35, 215–230 (1993).

    Article  Google Scholar 

  30. Islebe, G. A., Hooghiemstra, H. & van der Borg, K. Palaeogeogr. Palaeoclimatol. Palaeoecol. 117, 73–80 (1995).

    Article  Google Scholar 

  31. Street-Perrott, F. A. & Perrott, R. A. Nature 343, 607–612 (1990).

    Article  ADS  Google Scholar 

  32. Lamb, H. F. et al. Nature 373, 134–137 (1995).

    Article  ADS  CAS  Google Scholar 

  33. Gasse, F. & Van Campo, E. Earth planet. Sci. Lett. 126, 435–456 (1994).

    Article  ADS  Google Scholar 

  34. Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. & Raynaud, D. Nature 374, 46–49 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughen, K., Overpeck, J., Peterson, L. et al. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 51–54 (1996). https://doi.org/10.1038/380051a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380051a0

  • Springer Nature Limited

This article is cited by

Navigation