Skip to main content
Log in

Melting dynamics of a plasma crystal

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PLASMAS have long been regarded as the most disordered state of matter; nevertheless, a set of colloidal particles introduced into a charge-neutral plasma can spontaneously exhibit ordered crystalline structures1,2—so-called 'plasma crystals'. Such systems, which reach equilibrium very rapidly and can be easily tuned between their ordered and disordered states, are ideally suited for investigating the processes underlying the solid-to-liquid phase transition. Here we report the results of experiments on 'flat' plasma crystals (with thicknesses of only a few lattice planes) which suggest that the melting transition occurs through two fundamental intermediate stages. On melting, the crystal first enters a state characterized by islands of crystalline order, about which streams of particles flow. The crystalline regions then dissolve as the vibrational energy of the system increases, but this is accompanied by a temporary increase in orientational order before the system finally enters a disordered, liquid state. The unexpected 'vibrational' phase, characterized by enhanced orientational order, might arise as a consequence of the mixed two- and three-dimensional nature of the flat plasma crystals. Alternatively, it may indicate the existence of a new intermediate state in melting transitions more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, H. et al. Phys. Rev. Lett. 73, 652–655 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Chu, J. & Lin, I. Phys. Rev. Lett. 72, 4009–4012 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Melzer, A., Homann, A. & Piel, A. Phys. Rev. E (submitted).

  4. Ikezi, H. Phys. Fluids 29, 1764–1766 (1986).

    Article  ADS  Google Scholar 

  5. Farouki, R. & Appl. Phys. Lett. 61, 2973–2975 (1992).

    Article  ADS  Google Scholar 

  6. Wigner, E. Phys. Rev. 46, 1002–1011 (1934).

    Article  ADS  CAS  Google Scholar 

  7. Diedrich, F., Peik, E., Chen, J., Quint, W. & Walther, H. Phys. Rev. Lett. 59, 2931–2934 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Gilbert, S., Bollinger, J. & Wineland, D. Phys. Rev. Lett. 60, 2022–2025 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Waki, I., Kassner, S., Birkl, G. & Walther, H. Phys. Rev. Lett. 68, 2007–2010 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Jiang, H. et al. Phys. Rev. Lett. 65, 633–636 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Goldman, V., Santos, M., Shayegan, M. & Cunningham, J. Phys. Rev. Lett. 65, 2189–2192 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Kose, A., Ozaki, M., Takano, K. & Kobayashi, Y. & Hachisu, S. J. Colloid Interf. Sci. 44, 330–338 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Murray, C. Bond Orientational Order in Condensed Matter Systems (ed. Strandburg, K.) Ch. 4 (Springer, New York, 1992).

    Google Scholar 

  14. Grier, D. & Murray, C. J. chem. Phys. 100, 9088–9095 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Maddox, J. Nature 370, 411 (1994).

    Article  ADS  Google Scholar 

  16. Morfill, G. E. & Thomas, H. M. J. Vac. Sci. Technol. A (in the press).

  17. Morfill, G. E. et al. Colombus Precursor Flights Proposal (MPE preprint, 1991).

    Google Scholar 

  18. Murray, C. & Wenk, R. Phys. Rev. Lett. 58, 1643–1646 (1989).

    Article  ADS  Google Scholar 

  19. Hurley, M. & Harrowell, P. Phys. Rev. E52, 1694–1698 (1995).

    ADS  CAS  Google Scholar 

  20. Löwen, H. J. Phys.: Condens. Matter 4, 10105–10116 (1992).

    ADS  Google Scholar 

  21. Kosterlitz, J. & Thouless, D. J. Phys. C6, 1181–1203 (1973).

    ADS  CAS  Google Scholar 

  22. Halperin, B. & Nelson, D. Phys. Rev. Lett. 41, 121–124 (1978).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Nelson, D. & Halperin, B. Phys. Rev. B19, 2457–2484 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Young, A. Phys. Rev. B19, 1855–1857 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Nelson, D. in Phase Transitions and Critical Phenomena Vol. 7 (eds Domb, C. & Leibowitz, J.) (Academic, London, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, H., Morfill, G. Melting dynamics of a plasma crystal. Nature 379, 806–809 (1996). https://doi.org/10.1038/379806a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379806a0

  • Springer Nature Limited

This article is cited by

Navigation