Skip to main content
Log in

Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A GENERAL property of signal transduction pathways is that prolonged stimulation decreases responsiveness, a phenomenon termed desensitization. Yeast cells stimulated with mating phero-mone activate a heterotrimeric G-protein-linked, MAP-kinase-dependent signalling pathway that induces Gl-phase cell-cycle arrest and morphological differentiation (reviewed in refs 1, 2). Eventually the cells desensitize to pheromone and resume growth3. Genetic studies have demonstrated the relative importance of a desensitization mechanism that uses the SST2 gene product, Sst2p4–7. Here we identify a mammalian gene family termed RGS (for regulator of G-protein signalling) that encodes structural and functional homologues of Sst2p. Introduction of RGS family members into yeast blunts signal transduction through the pheromone-response pathway. Like SST2 (refs 8–10), they negatively regulate this pathway at a point upstream or at the level of the G protein. The RGS family members also markedly impair MAP kinase activation by mammalian G-protein-linked receptors, indicating the existence and importance of an SST2-like desensitization mechanism in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sprague, G. F. Jr. & Thorner, J. in Pheromone Response and Signal Transduction during the Mating Process of Saccharomyces cerevisiae (eds Broach, J. R., Pringle. J. R. & Jones, E. W.) 657–744 (Cold Spring Harbor Laboratory Press, New York, 1992).

    Google Scholar 

  2. Kurjan, J. A. Rev. genet. 27, 147–179 (1993).

    Article  CAS  Google Scholar 

  3. Moore, S. A. J. biol. Chem. 259, 1004–1010 (1984).

    CAS  PubMed  Google Scholar 

  4. Chan, R. K. & Otte, C. A. Molec. cell. Biol. 2, 11–20 (1982).

    Article  CAS  Google Scholar 

  5. Chan, R. K. & Otte, C. A. Molec. cell. Biol. 2, 21–29 (1982).

    Article  CAS  Google Scholar 

  6. Dietzel, C. & Kurjan, J. Molec. cell. Biol. 7, 4169–4177 (1987).

    Article  CAS  Google Scholar 

  7. Steven, M., Betz, R. & Duntze, W. Molec. gen. Genet. 219, 439–444 (1989).

    Article  Google Scholar 

  8. Blinder, D. & Jenness, D. D. Molec. cell. Biol. 9, 3720–3726 (1989).

    Article  CAS  Google Scholar 

  9. Hasson, M. S., Blinder, D., Thorner, J. & Jenness, D. D. Molec. cell. Biol. 14, 1054–1065 (1994).

    Article  CAS  Google Scholar 

  10. Dohlman, H. G. et al. Molec. cell. Biol. 15, 3635–3643 (1995).

    Article  CAS  Google Scholar 

  11. Adams, T. H., Hide, W. A., Yager, L. N. & Lee, B. N. Molec. cell. Biol. 12, 3827–3833 (1992).

    Article  CAS  Google Scholar 

  12. Hong, J. X., Wilson, G. L., Fox, C. H. & Kehrl, J. H. J. Immun. 150, 2895–3904 (1993).

    Google Scholar 

  13. Newton, J. S. et al. Biochem. biopnys. Acta 1216, 314–316 (1993).

    CAS  Google Scholar 

  14. Siderovski, D. P., Heximer. S. P. & Forsdyke, D. R. DNA Cell Biol. 12, 125 (1994).

    Article  Google Scholar 

  15. Wilson, R. et al. Nature 368, 32–38 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Lupas, A., Van Dyke, M. & Stock, J. Science 252, 1162–1164 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Cairns, B. R., Ramer, S. L. & Kornberg, R. D. Genes Dev. 6, 1305–1318 (1992).

    Article  CAS  Google Scholar 

  18. Murphy, P. M. & Tiffany, H. L. Science 253, 1280–1283 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Van Lint, J. et al. Molec. cell. Biochem. 127, 171–177 (1993).

    Article  Google Scholar 

  20. Mazer, B. D., Sawami, H., Todai, A. & Gelfand, E. W. J. clin. Invest. 90, 759–765 (1993).

    Article  Google Scholar 

  21. Franklin, R. A. et al. J. Immun. 151, 1802–1810 (1993).

    CAS  PubMed  Google Scholar 

  22. Koelle, M. R. & Horvitz, H. R. Cell 84, 115–125 (1996).

    Article  CAS  Google Scholar 

  23. Madura, K. & Varshavsky, A. Science 265, 1454–1458 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Dohmen, R. J., Madura, K., Bartel, B. & Varshavsky, A. Proc. natn. Acad. Sci. U.S.A. 88, 7351–7355 (1991).

    Article  ADS  CAS  Google Scholar 

  25. De Vries, L. et al. Proc. natn. Acad. Sci. U.S.A. 92, 11916–11920 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Weiner, J. L., Guttierez-Steil. C. & Blumer, K. J. J. biol. Chem. 268, 8070–8077 (1993).

    CAS  PubMed  Google Scholar 

  27. Kyriakis, J. M. et al. Nature 369, 156–160 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Thevenin, C., Lucas, B. P., Kozlow, E. J. & Kehrl, J. H. J. biol. Cnem. 268, 5949–5956 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druey, K., Blumer, K., Kang, V. et al. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 379, 742–746 (1996). https://doi.org/10.1038/379742a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379742a0

  • Springer Nature Limited

This article is cited by

Navigation