Skip to main content

Advertisement

Log in

Allometry and simple epidemic models for microparasites

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SIMPLE mathematical models for microparasites offer a useful way to examine the population dynamics of different viral and bacterial pathogens. One constraint in applying these models in free-living host populations is the paucity of data with which to estimate transmission rates. Here we recast a standard epi-demiological model by setting the birth and death rates of the host population and its density as simple allometric functions of host body weight. We then use standard threshold theorems for the model in order to estimate the minimum rate of transmission for the parasite to establish itself in a mammalian host population. Transmission rates that produce different comparable values of the parasites' basic reproductive number, R0, are themselves allometric functions of host body size. We have extended the model to show that hosts having different body sizes suffer epidemic outbreaks whose frequency scales with body size. The expected epidemic periods for pathogens in different mammalian populations correspond to cycles observed in free-living populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1992).

    Google Scholar 

  2. Anderson, R. M. & Trewhella, W. Phil. Trans R. Soc. Lond. B 310, 327–381 (1985).

    Article  CAS  Google Scholar 

  3. Fowler, C. W. Ecology 62, 602–610 (1981).

    Article  ADS  Google Scholar 

  4. Kermack, W. O. & McKendrick, A. G. Proc. R. Soc. Lond. A 115, 700–721 (1927).

    Article  ADS  Google Scholar 

  5. Anderson, R. M. & May, R. M. Nature 280, 361–367 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Antonovics, J., Iwasa, J. Y. & Hassell, M. P. Am. Nat. 145, 661–675 (1995).

    Article  Google Scholar 

  7. Thrall, P. H., Biere, A. & Uyenoyama, M. K. Am. Nat. 145, 43–62 (1995).

    Article  Google Scholar 

  8. Anderson, R. M. & May, R. M. Phil. Trans. R. Soc. Lond. B 291, 451–524 (1981).

    Article  Google Scholar 

  9. Grenfell, B. T. & Dobson, A. P. Infectious Diseases in Natural Populations (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  10. Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).

    Book  Google Scholar 

  11. Calder, W. A. Size, Functions and Life History (Harvard Univ. Press, Boston. 1984).

    Google Scholar 

  12. Schmidt-Nielsen. K. Scaling: Why is Animal Size so Important? (Cambridge Univ. Press, 1984).

    Book  Google Scholar 

  13. Charnov, E. L. Life History Invariants (Oxford Univ. Press, 1993).

    Google Scholar 

  14. Silva, M. & Downing, J. A. Am. Nat. 145, 704–727 (1995).

    Article  Google Scholar 

  15. Peterson, R. O., Page, R. E. & Dodge, K. M. Science 224, 1350–1352 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Mollison, D. Nature 310, 224–225 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Leo, G., Dobson, A. Allometry and simple epidemic models for microparasites. Nature 379, 720–722 (1996). https://doi.org/10.1038/379720a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379720a0

  • Springer Nature Limited

This article is cited by

Navigation