Skip to main content
Log in

Calcium-dependent interaction of N-type calcium channels with the synaptic core complex

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

NEUROTRANSMITTER release is initiated by influx of Ca2+ through voltage-gated Ca2+ channels1,2, within 200 μs of the action potential arriving at the synaptic terminal3, as the Ca2+ concentration increases from 100 nM to >200μM4. Exocytosis requires high Ca2+ concentration, with a threshold of 20–50 μM and half-maximal activation at 190 μM5,6. The synaptic membrane proteins syntaxin7,8, 25K synaptosome-associated protein (SNAP25)9, and vesicle-associated membrane protein (VAMP)/ synaptobrevin10–12, are thought to form a synaptic core complex which mediates vesicle docking and membrane fusion13–19. Synaptotagmin may be the low-affinity Ca2+-sensor20–24, but other Ca2+-sensors are involved25–27 as residual neurotransmission persists in synaptotagmin-null mutants. Syntaxin binds to N-type Ca2+ channels7,8,28,29 at a site in the intracellular loop connecting domains II and III30. Here we describe Ca2+-dependent interaction of this site with syntaxin and SNAP25 which has a biphasic dependence on Ca2+, with maximal binding at 20 μM free Ca2+, near the threshold for transmitter release. Ca2+-dependent interaction of Ca2+ channels with the synaptic core complex may be important for Ca2+-dependent docking and fusion of synaptic vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, S. J. & Augustine, G. J. Trends Neurosci. 11, 458–464 (1988).

    Article  CAS  Google Scholar 

  2. Robitaille, R., Adler, E. M. & Charlton, M. P. Neuron 5, 773–779 (1990).

    Article  CAS  Google Scholar 

  3. Barrett, E. F. & Stevens, C. F. J. Physiol., Lond. 227, 691–708 (1972).

    Article  CAS  Google Scholar 

  4. Llinás, R., Sugimori, M. & Silver, R. B. Science 256, 677–679 (1992).

    Article  ADS  Google Scholar 

  5. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Nature 371, 513–515 (1994).

    Article  ADS  CAS  Google Scholar 

  6. von Gersdorff, H. & Matthews, G. Nature 367, 735–739 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Bennett, M. K., Calakos, N. & Scheller, R. H. Science 257, 255–259 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Yoshida, A. et al. J. biol. Chem. 267, 24925–24928 (1992).

    CAS  Google Scholar 

  9. Oyler, G. A. et al. J. Cell Biol. 109, 3039–3052 (1989).

    Article  CAS  Google Scholar 

  10. Trimble, D. M., Cowan, D. M. & Scheller, R. H. Proc. natn. Acad. Sci. U.S.A. 85, 4538–4542 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Elferink, L. A., Trimble, W. S. & Scheller, R. H. J. biol. Chem. 264, 11061–11064 (1989).

    CAS  Google Scholar 

  12. Südhof, T. C. & Jahn, R. Neuron 6, 665–677 (1991).

    Article  Google Scholar 

  13. Söllner, T. et al. Nature 363, 318–324 (1993).

    Article  ADS  Google Scholar 

  14. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  15. Söllner, T. & Rothman, J. E. Trends Neurosci. 17, 344–348 (1994).

    Article  Google Scholar 

  16. Pevsner, J. et al. Neuron 13, 353–361 (1994).

    Article  CAS  Google Scholar 

  17. Calakos, N., Bennett, M. K., Peterson, K. & Scheller, R. H. Science 263, 1146–1149 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Hayashi, T. et al. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  Google Scholar 

  19. DeBello, W. M. et al. Nature 373, 626–630 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Perin, M. S. Fried, V. A., Mignery, G. A., Jahn, R. & Südhof, T. C. Nature 345, 260–263 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Brose, N., Petrenko, A. G., Südhof, T. C. & Jahn, R. Science 256, 1021–1025 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Davletov, B. A. & Südhof, T. C. J. biol. Chem. 268, 26386–26390 (1993).

    CAS  Google Scholar 

  23. Chapman, E. R. & Jahn, R. J. biol. Chem. 269, 5735–5741 (1994).

    CAS  PubMed  Google Scholar 

  24. Geppert, M. et al. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  25. DiAntonio, A. K., Parfitt, D. & Schwarz, T. L. Cell 72, 1281–1290 (1993).

    Article  Google Scholar 

  26. Nonet, M., Grundahl, K., Meyer, B. J. & Band, J. B. Cell 73 1291–1305 (1993).

    Article  CAS  Google Scholar 

  27. Littleton, J. T., Stern, M., Schulze, K., Perin, M. & Beller, H. J. Cell 74, 1125–1134 (1993).

    Article  CAS  Google Scholar 

  28. O'Conner, V. M., Shamotienko, O., Grishin, E. & Betz, H. FEBS Lett. 326, 255–261 (1993).

    Article  Google Scholar 

  29. Lévêque, C. et al. J. biol. Chem. 269, 6309–6312 (1994).

    Google Scholar 

  30. Sheng, Z.-H., Rettig, J., Takahsahi, M. & Catterall, W. A. Neuron 13, 1301–1313 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, ZH., Rettig, J., Cook, T. et al. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379, 451–454 (1996). https://doi.org/10.1038/379451a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379451a0

  • Springer Nature Limited

This article is cited by

Navigation