Skip to main content

Advertisement

Log in

Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE basic/leucine zipper (bZip) transcription factor, CREB, binds to the CRE element (TGANNTCA)1–5. The transcriptional activity of CREB requires phosphorylation of the protein on a serine residue at position 119 (ref. 6). CREs are present in a number of T-cell genes7,8 but the precise role of CREB in T-cell differentiation and function was unknown. Here we show that resting thymocytes contain predominantly unphosphorylated (inactive) CREB, which is rapidly activated by phosphorylation on Ser 119 following thymocyte activation. T-cell development is normal in transgenic mice that express a dominant-negative form of CREB (CREBA119, with alanine at position 119) under the control of the T-cell-specific CD2 promoter/enhancer. In contrast, thymocytes and T cells from these animals display a profound proliferative defect characterized by markedly decreased interleukin-2 production, Gl cell-cycle arrest and subsequent apoptotic death in response to a number of different activation signals. This proliferative defect is associated with the markedly reduced induction of c-junc-fos Fra-2 and FosB following activation of the CREBA119 transgenic thymocytes. We propose that T-cell activation leads to the phosphorylation and activation of CREB, which in turn is required for normal induction of the transcription factor API and subsequent interleukin-2 production and cell-cycle progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoeffler, J. P., Meyer, T. E., Yun, Y., Jameson, J. L. & Habener, J. F. Science 242, 1430–1433 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Gonzalez, G. A. et al. Nature 337, 749–752 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Habener, J. F. Molec. Endocr. 4, 1087–1094 (1990).

    Article  CAS  Google Scholar 

  4. Lee, K. A. W. & Masson, N. Biochim. biophys. Acta. 1174, 221–223 (1993).

    Article  CAS  Google Scholar 

  5. Vallejo, M. J. Neuroendocrinology 6, 587–596 (1994).

    Article  CAS  Google Scholar 

  6. Gonzalez, G. A. & Montminy, M. R. Cell 59, 675–680 (1989).

    Article  CAS  Google Scholar 

  7. Leiden, J. M. A. Rev. Immun. 11, 539–570 (1993).

    Article  CAS  Google Scholar 

  8. Calame, K. & Eaton, S. Adv. Immun. 43, 235–275 (1988).

    Article  CAS  Google Scholar 

  9. Ginty, D. D. et al. Science 260, 238–241 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Hidaka, H., Inagaki, M., Kawamoto, S. & Sasaki, Y. Biochemistry 23, 5036–5041 (1984).

    Article  CAS  Google Scholar 

  11. Greaves, D. R., Wilson, F. D., Lang, G. & Kioussis, D. Cell 56, 979–986 (1989).

    Article  CAS  Google Scholar 

  12. Lake, R. A., Wotton, D. & Owen, M. J. EMBO J. 9, 3129–3136 (1990).

    Article  CAS  Google Scholar 

  13. Lee, C. Q., Yun, Y., Hoeffler, J. P. & Habener, J. F. EMBO J. 9, 4444–4465 (1990).

    Article  Google Scholar 

  14. Struthers, R. S., Vale, W. W., Arias, C., Sawchenko, P. E. & Montminy, M. R. Nature 350, 622–624 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Hummler, E. et al. Proc. natn. Acad. Sci. U.S.A. 91, 5647–5651 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Smith, K. Curr. Opin. Immun. 4, 271–276 (1992).

    Article  CAS  Google Scholar 

  17. Rothenberg, E. V. Adv. Immun. 51, 85–214 (1992).

    Article  CAS  Google Scholar 

  18. Kisielow, P. & von Boehmer, H. Adv. Immun. 58, 87–209 (1995).

    Article  CAS  Google Scholar 

  19. Jain, J., McCaffrey, P. G., Valge, A. V. & Rao, A. Nature 356, 801–804 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Boise, L. H. et al. Molec. cell. Biol. 13, 1911–1919 (1993).

    Article  CAS  Google Scholar 

  21. Berkowitz, L. A., Riabowol, K. T. & Gilman, M. Z. Molec. cell. Biol. 9, 4272–4281 (1989).

    Article  CAS  Google Scholar 

  22. Sheng, M., Dougan, S. T., McFadden, G. & Greenberg, M. E. Molec. cell. Biol. 8, 2787–2796 (1988).

    Article  CAS  Google Scholar 

  23. Ofir, R., Dwarki, V. J., Rashid, D. & Verma, I. M. Gene Express. 1, 55–60 (1991).

    CAS  Google Scholar 

  24. Wagner, A. J., Kokontis, J. M. & Hay, N. Genes Dev. 8, 2817–2830 (1994).

    Article  CAS  Google Scholar 

  25. Shi, Y. et al. Science 257, 212–214 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Harrington, E. A., Bennett, M. R., Fanidi, A. & Evan, G. I. EMBO J. 13, 3286–3295 (1994).

    Article  CAS  Google Scholar 

  27. Wang, C. Y., Petryniak, B., Thompson, C. B., Kaelin, W. G. & Leiden, J. M. Science 260, 1330–1335 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Karpinski, B. A., Morle, G. D., Huggenvik, J., Uhler, M. D. & Leiden, J. M. Proc. natn. Acad. Sci. U.S.A. 89, 4820–4824 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Schmid, I., Uittenbogaart, C. H., Keld, B. & Giorgi, J. V. J. immun. Meth. 170, 145–157 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barton, K., Muthusamy, N., Chanyangam, M. et al. Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 379, 81–85 (1996). https://doi.org/10.1038/379081a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379081a0

  • Springer Nature Limited

This article is cited by

Navigation