Skip to main content
Log in

A room-temperature organometallic magnet based on Prussian blue

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE rational design of molecular compounds that exhibit spontaneous magnetic ordering might enable one to tailor magnetic properties for specific applications in magnetic memory devices1–4. In such materials synthesized previously5–17, however, the underlying weak magnetic interactions are incapable of maintaining ordering at ambient temperatures. One remarkable exception is a compound derived from vanadium and tetracyanoethylene18, but the material is amorphous and fragile, and consequently the molecular interactions responsible for its striking properties are not understood. Here we demonstrate another route to the synthesis of a room-temperature organometallic magnet, in which we combine a hexa-cyanometalate [M(CN)6]q with a Lewis acid Lp+ If L and M are transition-metal ions, then the orbital interactions in the resulting compound can be described by well understood principles21–24, and it is therefore possible to choose the metals to tune the compound's magnetic properties–in particular, the magnetic ordering (Curie) temperature Tc (refs 21–26). We have synthesized a room-temperature magnetic material (TC = 315 K) that belongs to the Prussian blue family of compounds27 (where M is chromium and L is vanadium), demonstrating that transition-metal hexacyano complexes are promising components for the construction of molecule-based high-Tc magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, J. S. Angew. Chem. int. Edn Eng. 33, 385–415 (1994).

    Article  Google Scholar 

  2. Gatteschi, D. Adv. Mater. 6, 635–645 (1994).

    Article  CAS  Google Scholar 

  3. Verdaguer, M. et al. in Contributions to Development of Coordination Chemistry (eds Ondrejovic, G. & Sirota, A.) 19–24 (Slovak Tech. Univ. Press, Bratislava, 1993).

    Google Scholar 

  4. Kahn, O. Molecular Magnetism (VCH, New York, 1993).

    Google Scholar 

  5. Pei, Y., Verdaguer, M., Kahn, O., Sletten, J. & Renard, J. P. J. Am. chem. Soc. 108, 7428–7429 (1986).

    Article  CAS  Google Scholar 

  6. Kahn, O., Pei, Y., Verdaguer, M., Renard, J. P. & Sletten, J. J. Am. chem. Soc. 110, 782–789 (1988).

    Article  CAS  Google Scholar 

  7. Tamaki, H. et al. J. Am. chem. Soc. 114, 6974–6979 (1992).

    Article  CAS  Google Scholar 

  8. Day, P. Accts chem. Res. 12, 236–243 (1979).

    Article  CAS  Google Scholar 

  9. Descurtins, S. et al. Inorg. chim. Acta 216, 65–73 (1994).

    Article  Google Scholar 

  10. Stumpf, H. O., Ouahab, L., Pei, Y., Grandjean, D. & Kahn, O. Science 261, 447–449 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Broderick, W. E., Thompson, J. A., Day, E. P. & Hoffman, B. M. Science 249, 401–403 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Caneschi, A., Gatteschi, D., Renard, J. P., Rey, P. & Sessoli, R. J. Am. chem. Soc. 111, 785–786 (1989).

    Article  CAS  Google Scholar 

  13. Caneschi, A., Gatteschi, D., Sessoli, R. & Rey, P. Accts chem. Res. 22, 392–398 (1989).

    Article  CAS  Google Scholar 

  14. Miller, J. S., Calabrese, J. C., McLean, R. S. & Epstein, A. J. Adv. Mater. 4, 298–300 (1992).

    Article  CAS  Google Scholar 

  15. Nakazawa, Y. et al. Phys. Rev. B46, 8906–8914 (1992).

    Article  CAS  Google Scholar 

  16. Allemand, P. M. et al. Science 253, 301–303 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Chiarelli, R., Nowak, M. A., Rassat, A. & Tholence, J. L. Nature 363, 147–149 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Manriquez, J. M., Yee, G. T., McLean, R. S., Epstein, A. J. & Miller, J. S. Science 252, 1415–1417 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Güdel, H. U., Stucki, H. & Lüdi, A. Inorg. chim. Acta 7, 121–124 (1973).

    Article  Google Scholar 

  20. Lüdi, A. & Güdel, H. U. in Structure and Bonding Vol. 14 (eds Dunitz, J. D. et al.) 1–21 (Springer, Berlin, 1973).

    Google Scholar 

  21. Gadet, V., Mallah, T., Castro, I., Veillet, P. & Verdaguer, M. J. Am. chem. Soc. 114, 9213–9214 (1992).

    Article  CAS  Google Scholar 

  22. Mallah, T., Thiébaut, S., Verdaguer, M. & Veillet, P. Science 262, 1554–1557 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Entley, W. R. & Girolami, G. S. Inorg. Chem. 33, 5165–5166 (1994).

    Article  CAS  Google Scholar 

  24. Entley, W. R. & Girolami, G. S. Science 268, 397–402 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Bozorth, R. M., Williams, H. J. & Walsh, D. E. Phys. Rev. 103, 572–578 (1956).

    Article  ADS  CAS  Google Scholar 

  26. Babel, D. Comments inorg. Chem. 5, 285–320 (1982).

    Article  Google Scholar 

  27. Anonymous, Miscellanea berolinensia ad Incrementum scientiarum Vol. l, 377–378 (Berlin, 1710).

  28. Nakamoto, K. Infra-red and Raman Spectra of Inorganic and Coordination Compounds 259–267 (Wiley, New York, 1978).

    Google Scholar 

  29. Wong, J., Lytle, F., Messmer, R. P. & Maylotte, D. H. Phys. Rev. B30, 5596–5610 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Néel, L. Annls Phys. 3, 137–198 (1948).

    Article  Google Scholar 

  31. Köningsberger, D. C. & Prins, R. (eds) X-ray Absorption (Wiley, New York, 1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferlay, S., Mallah, T., Ouahès, R. et al. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995). https://doi.org/10.1038/378701a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378701a0

  • Springer Nature Limited

This article is cited by

Navigation