Skip to main content
Log in

Magnetism of the carbon allotropes

  • Review Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The difference in magnetic susceptibility of graphite and diamond prompted Raman to postulate the flow of currents around the ring system of graphite in response to an applied magnetic field. The discovery of new carbon allotropes, the fullerenes, has furthered our understanding of this phenomenon and its relationship to aromatic character. C60 and the other fullerenes exhibit both diamagnetic and paramagnetic ring currents, which exert subtle effects on the magnetic properties of these molecules and provide evidence for the existence of π-electrons mobile in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raman, C. V. Nature 123, 945 (1929).

    Article  ADS  CAS  Google Scholar 

  2. Ehrenfest, P. Physica 5, 388–391 (1925).

    CAS  Google Scholar 

  3. Pauling, L. J. chem. Phys. 4, 673–677 (1936).

    Article  ADS  CAS  Google Scholar 

  4. Lonsdale, K. Proc. R. Soc. 159, 149–161 (1937).

    ADS  CAS  Google Scholar 

  5. Van Vleck, J. H. The Theory of Electric and Magnetic Susceptibilities (Oxford Univ. Press, 1965).

    MATH  Google Scholar 

  6. Garratt, P. J. Aromaticity (Wiley, New York, 1986).

    Google Scholar 

  7. Minkin, V. I., Glukhovtsev, J. N. & Simkin, B. Y. Aromaticity and Antiaromaticity (Wiley, New York, 1994).

    Google Scholar 

  8. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–164 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Smalley, R. E. Chem. Engng News 66(35), 33–35, Aug. 29 (1988).

    Google Scholar 

  10. Elser, V. & Haddon, R. C. Nature 325, 792–794 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Elser, V. & Haddon, R. C. Phys. Rev. A36, 4579–4584 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Haigh, C. W. & Mallion, R. B. Prog. NMR Spectrosc. 13, 303–344 (1980).

    Article  Google Scholar 

  13. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1990).

    Article  ADS  Google Scholar 

  14. Haddon, R. C. et al. Nature 350, 46–47 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Ruoff, R. S. et al. J. phys. Chem. 95, 3457–3459 (1991).

    Article  CAS  Google Scholar 

  16. Hückel, E. Z. Phys. 70, 204–286 (1931).

    Article  ADS  Google Scholar 

  17. Hückel, E. Z. Phys. 60, 423–456 (1930).

    Article  ADS  Google Scholar 

  18. Haddon, R. C. Acc. chem. Res. 21, 243–249 (1988).

    Article  CAS  Google Scholar 

  19. Dauben, H. J., Wilson, J. D. & Laity, J. L. J. Am. chem. Soc. 91, 1991–1998 (1969).

    Article  CAS  Google Scholar 

  20. Haddon, R. C. & Elser, V. Chem. Phys. Lett. 169, 362–364 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Schmaltz, T. G. Chem. Phys. Lett. 175, 3–5 (1990).

    Article  ADS  Google Scholar 

  22. Pople, J. A. J. chem. Phys. 24, 1111 (1956).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Pasquarello, A., Schluter, M. & Haddon, R. C. Science 257, 1660–1661 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Pasquarello, A., Schluter, M. & Haddon, R. C. Phys. Rev. A47, 1783–1789 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Suzuki, T., Li, Q., Khemani, K. C. & Wudl, F. J. Am. chem. Soc. 114, 7301–7302 (1992).

    Article  CAS  Google Scholar 

  26. Prato, M., Suzuki, T., Wudl, F., Lucchini, V. & Maggini, M. J. Am. chem. Soc. 115, 7876–7877 (1993).

    Article  CAS  Google Scholar 

  27. Prato, M. et al. J. Am. chem. Soc. 115, 8479–8480 (1993).

    Article  CAS  Google Scholar 

  28. Isaacs, L., Wehrsig, A. & Diederich, F. Helv. chim. Acta 76, 1231–1250 (1993).

    Article  CAS  Google Scholar 

  29. Smith, A. B. et al. J. chem. Soc., chem. Commun. 2187–2188 (1994).

  30. Wudl, F. Acc. Chem. Res. 25, 157–161 (1992).

    Article  CAS  Google Scholar 

  31. Haddon, R. C. Science 261, 1545–1550 (1993).

    Article  ADS  CAS  Google Scholar 

  32. Taylor, R. & Walton, D. R. M. Nature 363, 685–693 (1993).

    Article  ADS  CAS  Google Scholar 

  33. Saunders, M. et al. Nature 367, 256–258 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Haddon, R. C. Nature 367, 214 (1994).

    Article  ADS  Google Scholar 

  35. Cioslowski, J. J. Am. chem. Soc. 116, 3619–3620 (1994).

    Article  CAS  Google Scholar 

  36. Cioslowski, J. Chem. Phys. Lett. 227, 361–364 (1994).

    Article  ADS  CAS  Google Scholar 

  37. Bühl, M. et al. J. Am. chem. Soc. 116, 6005–6006 (1994).

    Article  Google Scholar 

  38. Haddon, R. C. & Pasquarello, A. Phys. Rev. B50, 16459–16463 (1994).

    Article  CAS  Google Scholar 

  39. Bühl, M. & Thiel, W. Chem. Phys. Lett. 233, 585–589 (1995).

    Article  ADS  Google Scholar 

  40. Fowler, P. W., Lazzeretti, P. & Zanasi, R. Chem. Phys. Lett. 165, 79–86 (1990).

    Article  ADS  CAS  Google Scholar 

  41. McWeeny, R. Molec. Phys. 1, 311–321 (1958).

    Article  ADS  CAS  Google Scholar 

  42. Mallion, R. B. Molec. Phys. 25, 1415–1432 (1973).

    Article  ADS  CAS  Google Scholar 

  43. Mallion, R. B. J. chem. Phys. 75, 793–797 (1981).

    Article  ADS  CAS  Google Scholar 

  44. Haddon, R. C. Tetrahedron 28, 3613–3634, 3635–3655 (1972).

    Article  CAS  Google Scholar 

  45. Zanasi, R. & Fowler, P. W. Chem. Phys. Lett. 238, 270–280 (1995).

    Article  ADS  Google Scholar 

  46. Heremans, J. Olk, C. H. & Morelli, D. T. Phys. Rev. B49, 15122–15125 (1994).

    Article  CAS  Google Scholar 

  47. Luo, W., Wang, H., Ruoff, R. S., Cioslowski, J. & Phelps, S. Phys. Rev. Lett. 73, 186–188 (1994).

    Article  ADS  CAS  Google Scholar 

  48. Ramirez, A. P. et al. Science 265, 84–86 (1994).

    Article  ADS  CAS  Google Scholar 

  49. David, W. I. F. et al. Nature 353, 147–149 (1991).

    Article  ADS  CAS  Google Scholar 

  50. Saunders, M. et al. J. Am. chem. Soc. 117, 9305–9308 (1995).

    Article  CAS  Google Scholar 

  51. Bausch, J. W. et al. J. Am. chem. Soc. 113, 3205–3206 (1991).

    Article  CAS  Google Scholar 

  52. van Ruitenbeek, J. M. & van Leeuwen, D. A. Phys. Rev. Lett. 67, 640–643 (1991).

    Article  ADS  Google Scholar 

  53. McClure, J. W. Phys. Rev. 104, 666–671 (1956).

    Article  ADS  CAS  Google Scholar 

  54. McClure, J. W. J. chim. Phys. 57, 859–865 (1960).

    Article  CAS  Google Scholar 

  55. Hoarau, J. & Volpilhac, G. Phys. Rev. B14, 4045–4053 (1976).

    Article  ADS  CAS  Google Scholar 

  56. Volpilhac, G. & Hoarau, J. Phys. Rev. B17, 1445–1449 (1978).

    Article  ADS  CAS  Google Scholar 

  57. Iijima, S. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  58. Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  59. Lu, J. P. Phys. Rev. Lett. 74, 1123–1126 (1995).

    Article  ADS  CAS  Google Scholar 

  60. Wang, X. K., Chang, R. P. H., Patashinski, A. & Ketterson, J. B. J. Mater. Res. 9, 1578–1582 (1994).

    Article  ADS  CAS  Google Scholar 

  61. Chauvet, O. et al. Phys. Rev. B (in the press).

  62. London, F. J. Phys. Radium, Paris 8, 397–409 (1937).

    Article  CAS  Google Scholar 

  63. Fleischer, U., Kutzelnigg, W. Lazzeretti, P. & Mülenkamp, V. J. Am. chem. Soc. 116, 5298–5306 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddon, R. Magnetism of the carbon allotropes. Nature 378, 249–255 (1995). https://doi.org/10.1038/378249a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/378249a0

  • Springer Nature Limited

This article is cited by

Navigation