Skip to main content

Advertisement

Log in

Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 29 February 1996

Abstract

The sensitivity of the North Atlantic thermohaline circulation to the input of fresh water is studied using a global ocean circulation model coupled to a simplified model atmosphere. Owing to the nonlinearity of the system, moderate changes in freshwater input can induce transitions between different equilibrium states, leading to substantial changes in regional climate. As even local changes in freshwater flux are capable of triggering convective instability, quite small perturbations to the present hydrological cycle may lead to temperature changes of several degrees on timescales of only a few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall, M. M. & Bryden, H. L. Deep-Sea Res. 29, 339–359 (1982).

    Article  ADS  Google Scholar 

  2. Rintoul, S. R. & Wunsch, C. Deep Sea Res. 38, S355–S377 (1991).

    Article  ADS  Google Scholar 

  3. Roemmich, D. H. & Wunsch, C. Deep-Sea Res. 32, 619–664 (1985).

    Article  ADS  Google Scholar 

  4. Levitus, S. Climatological Atlas of the World Ocean (US Dept of Commerce, NOAA, Washington DC, 1982).

    Google Scholar 

  5. Stommel, H. Tellus 13, 224–230 (1961).

    Article  ADS  Google Scholar 

  6. Bryan, F. Nature 323, 301–304 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Manabe, S. & Stouffer, R. J. J. Clim. 1, 841–866 (1988).

    Article  ADS  Google Scholar 

  8. Marotzke, J. & Willebrand, J. J. phys. Oceanogr. 21, 1372–1385 (1991).

    Article  ADS  Google Scholar 

  9. Maier-Reimer, E. & Mikolajewicz, U. in Oceanography (eds Ayala-Castañares. A., Wooster. W. & Yáñez-Aranclbia, A.) 87–100 (UNAM, Mexico, 1989).

    Google Scholar 

  10. Stocker, T. F. & Wright, D. G. Nature 351, 729–732 (1991).

    Article  ADS  Google Scholar 

  11. Mikolajewicz, U. & Maier-Reimer, E. J. geophys. Res. 99, 22633–22644 (1994).

    Article  ADS  Google Scholar 

  12. Broecker, W. S., Peteet, D. M. & Rind, D. Nature 315, 21–26 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Boyle, E. A. & Keigwin, L. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Keigwin, L. D., Curry, W. B., Lehman, S. J. & Johnson, S. Nature 371, 323–326 (1994).

    Article  ADS  Google Scholar 

  15. Sarnthein, M. et al. Paleoceanography 9, 209–267 (1994).

    Article  ADS  Google Scholar 

  16. Cubasch, U. et al. Clim. Dyn. 8, 55–69 (1992).

    Article  Google Scholar 

  17. Manabe, S. & Stouffer, R. J. Nature 364, 215–218 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Pacanowski, R., Dixon, K. & Rosati, A. The GFDL Modular Ocean Model Users Guide (Tech. Rep. Vol. 2, Geophysical Fluid Dynamics Laboratory ocean group, Princeton, 1991).

    Google Scholar 

  19. England, M. H. J. phys. Oceanogr. 23, 1523–1552 (1993).

    Article  ADS  Google Scholar 

  20. Hellerman, S. & Rosenstein, M. J. phys. Oceanogr. 13, 1093–1104 (1983).

    Article  ADS  Google Scholar 

  21. Rahmstorf, S. Clim. Dyn. 11, 447–458 (1995).

    Article  Google Scholar 

  22. Rahmstorf, S. & Willebrand, J. J. phys. Oceanogr. 25, 787–805 (1995).

    Article  ADS  Google Scholar 

  23. Marotzke, J. in Ocean Processes in Climate Dynamics: Global and Mediterranean Examples (eds Malanotte-Rizzoli, P. & Robinson, A. R.) 79–109 (Kluwer, Dordrecht, 1994).

    Book  Google Scholar 

  24. Hughes, T. M. C. & Weaver, A. J. J. phys. Oceanogr. (in the press).

  25. Manabe, S. & Stouffer, R. J. J. Clim. 7, 5–23 (1994).

    Article  ADS  Google Scholar 

  26. Fairbanks, R. G. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  27. Lenderink, G. & Haarsma, R. J. J. phys. Oceanogr. 24, 1480–1493 (1994).

    Article  ADS  Google Scholar 

  28. Rahmstorf, S. J. Clim. (in the press).

  29. Rahmstorf, S. Nature 372, 82–85 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Kawase, M. J. phys. Oceanogr. 17, 2294–2316 (1987).

    Article  ADS  Google Scholar 

  31. Döscher, R., Böning, C. W. & Herrmann, P. J. phys. Oceanogr. 24, 2306–2320 (1994).

    Article  ADS  Google Scholar 

  32. Kushnir, Y. J. Clim. 7, 142–157 (1994).

    Article  ADS  Google Scholar 

  33. Delworth, T., Manabe, S. & Stouffer, R. J. J. Clim. 6, 1993–2011 (1993).

    Article  ADS  Google Scholar 

  34. Weaver, A. J., Aura, S. M. & Myers, P. G. J. geophys. Res. 99, 12423–12442 (1994).

    Article  ADS  Google Scholar 

  35. Weisse, R., Mikolajewicz, U. & Maier-Reimer, E. J. geophys. Res. 99, 12411–12421 (1994).

    Article  ADS  Google Scholar 

  36. Stigebrandt, A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 50, 303–321 (1985).

    Article  Google Scholar 

  37. Schlosser, P. et al. Science 251, 1054–1056 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Drazin, P. G. Nonlinear Systems (Cambridge Univ. Press. 1992).

    Book  Google Scholar 

  39. Manabe, S. & Stouffer, R. J. Nature 378, 165–167 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995). https://doi.org/10.1038/378145a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378145a0

  • Springer Nature Limited

This article is cited by

Navigation