Skip to main content
Log in

The observational case for a low-density Universe with a non-zero cosmological constant

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

OBSERVATIONS are providing progressively tighter constraints on cosmological models advanced to explain the formation of large-scale structure in the Universe. These include recent determinations of the Hubble constant1á¤-3 (which quantifies the present expansion rate of the Universe) and measurements of the anisotropy of the cosmic microwave background4,5. Although the limits imposed by these diverse observations have occasionally led to suggestions6 that cosmology is facing a crisis, we show here that there remains a wide range of cosmological models in good concordance with these constraints. The combined observations point to models in which the matter density of the Universe falls well below the critical energy density required to halt its expansion. But they also permit a substantial contribution to the energy density from the vacuum itself (a positive ᤘcosmological constantᤙ), sufficient to recover the critical density favoured by the simplest inflationary models. The observations do not yet rule out the possibility that we live in an ever-expanding ᤘopenᤙ Universe, but a Universe having the critical energy density and a large cosmological constant appears to be favoured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freedman, W. L. et al. Nature 371, 757–762 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Riess, A. G., Press, W. H. & Kirshner, R. P. Astrophys. J. 438, L17–L20 (1995).

    Article  ADS  Google Scholar 

  3. Hamuy, M. et al. Astrophys. J. 109, 1–13 (1995).

    Google Scholar 

  4. Smoot, G. F. et al. Astrophys. J. 396, L1–L5 (1992).

    Article  ADS  Google Scholar 

  5. Steinhardt, P. J. Int. J. mod. Phys. A10, 1091–1124 (1995).

    Article  ADS  Google Scholar 

  6. Bolte, M. & Hogan, C. J. Nature 376, 399–402 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Guth, A. H. Phys. Rev. D23, 347–356 (1981).

    ADS  CAS  Google Scholar 

  8. Linde, A. Phys. Lett. 108B, 389–392 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Albrecht, A. & Steinhardt, P. J. Phys. Rev. Lett. 48, 1220–1223 (1982).

    Article  ADS  Google Scholar 

  10. Bardeen, J., Steinhardt, P. J. & Turner, M. S. Phys. Rev. D28, 679–693 (1983).

    ADS  Google Scholar 

  11. Guth, A. H. & Pi, S.-Y. Phys. Rev. Lett. 49, 1110–1113 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Starobinskii, A. A. Phys. Lett. B117, 175–178 (1982).

    Article  Google Scholar 

  13. Hawking, S. W. Phys. Lett. B115, 295–298 (1982).

    Article  Google Scholar 

  14. Harrison, E. Phys. Rev. D1, 2726–2730 (1970).

    Article  ADS  Google Scholar 

  15. Zel'dovich, Ya. B. Mon. Not. R. astr. Soc. 160, 1p–3p (1972).

    Article  ADS  Google Scholar 

  16. Peebles, P. J. E. & Yu, J. T. Astrophys. J. 162, 815–836 (1970).

    Article  ADS  Google Scholar 

  17. Davis, R. et al. Phys. Rev. Lett. 69, 1856–1859 (1994).

    Article  ADS  Google Scholar 

  18. Bunn, E. F. & Sugiyama, N. Astrophys.J. 446, 49–53 (1994).

    Article  ADS  Google Scholar 

  19. Copi, C., Schramm, D. N. & Turner, M. S. Science 267, 192–199 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Kolb, E. W. & Turner, M. S. The Early Universe Ch. 9 (Addison-Wesley, Reading,MA. 1990).

    MATH  Google Scholar 

  21. Ratra, B. & Peebles, P. J. E. Astrophys. J. 432, L5–L9 (1994).

    Article  ADS  Google Scholar 

  22. Kamionkowski, M., Spergel, D. N. & Sugiyama, N. Astrophys. J. 426, L57–L60 (1994).

    Article  ADS  Google Scholar 

  23. Fukugita, M., Hogan, J.C. & Peebles, P. J. E. Nature 336, 309–312 (1993).

    Article  ADS  Google Scholar 

  24. Jimenez, R. et al. (in preparation).

  25. Carroll, S. M., Press, W. H. & Turner, E. L. A. Rev. Astrophys. 30, 499–542 (1992).

    Article  ADS  Google Scholar 

  26. Fukugita, M. & Turner, E. L. Mon. Not. R. astr. Soc. 253, 99–106 (1991).

    Article  ADS  Google Scholar 

  27. Maoz, D. & Rix, H.-W. Astrophys. J. 416, 425–443 (1993).

    Article  ADS  Google Scholar 

  28. Peebles, P. J. E. Physical Cosmology (Princeton Univ. Press, 1994).

    Google Scholar 

  29. Strauss, M. A. & Willick, J. A. Phys. Rep. (in the press).

  30. White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. Nature 366, 429–433 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Peacock, J. A. & Dodds, S. J. Mon. Not. R. astr. Soc. 267, 1020–1034 (1994).

    Article  ADS  Google Scholar 

  32. Turner, M. S., Steigman, G. & Krauss, L. Phys. Rev. Lett. 52, 2090–2093 (1984).

    Article  ADS  CAS  Google Scholar 

  33. Peebles, P. J. E. Astrophys. J. 284, 439–444 (1984).

    Article  ADS  CAS  Google Scholar 

  34. Kofman, L. & Starobinskii, A. A. Soviet Astr. Lett. 11, 271–274 (1985).

    ADS  Google Scholar 

  35. Efstathiou, G., Sutherland, W. J. & Maddox, S. J. Nature 348, 705–707 (1990).

    Article  ADS  Google Scholar 

  36. Coles, P. & Ellis, R. Nature 370, 609–702 (1994).

    Article  ADS  Google Scholar 

  37. Krauss, L. & Turner, M. S. Class. Quantum Grav. (submitted).

  38. White, S. D. M., Efstathiou, G. & Frenck, C. S. Mon. Not. R. astr. Soc. 262, 1023–1028 (1993).

    Article  ADS  Google Scholar 

  39. Bond, J. R. in Cosmology and Large Scale Structure (ed. Schaeffer, R.) (Eisevier Science Publ., in the press).

  40. Gorski, et al. Astrophys. J. 430, L89 (1994).

    Article  ADS  Google Scholar 

  41. Gorski, K., Ratra, D., Sugiyama, N. & Banday, A. J. Astrophys. J. 444, L67–L71 (1995).

    Article  ADS  Google Scholar 

  42. Bond, J. R. et al. Phys. Rev. Lett. 72, 13–16 (1994).

    Article  ADS  CAS  Google Scholar 

  43. Jungman, G., Kamionkowski, M. & Kosowsky, A. preprint astro-ph/9507080 (1985) (Syracuse Univ., 1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostriker, J., Steinhardt, P. The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377, 600–602 (1995). https://doi.org/10.1038/377600a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377600a0

  • Springer Nature Limited

This article is cited by

Navigation