Skip to main content
Log in

Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE eruption of Mount Pinatubo in the Philippines led to a cold air-temperature anomaly throughout the Middle East during the winter of 19921. Here we report that the vertical mixing in the Gulf of Eilat (Aqaba) that winter was unusually deep―extending to >850 m―resulting in increased supply of nutrients to surface waters, which fuelled extraordinarily large algal and phytoplank-ton blooms. By spring, a thick mat of filamentous algae covered broad sections of the underlying reef causing extensive coral death. Branching colonies and solitary mushroom corals were most severely affected. This sequence of events, in which a short-term atmospheric cooling leads to a remarkable ecological response, is made possible by the unusually weak water-column stratification of the Gulf of Eilat. The depth of local vertical mixing during winter is determined by the net heat loss across the seaá¤-air interface, so that anomalously cold winters drive the deeper mixing that can lead to increased phytoplankton blooms. Records of such events in fossil reefs may provide useful indicators of past variations in regional air temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robock, A. & Mao, J. Geophys. Res. Lett. 19, 2405–2408 (1992).

    Article  ADS  Google Scholar 

  2. Reiss, Z. Hottinger, L. The Gulf of Aqaba, Ecological Micropaleontology (Springer, Berlin, 1984).

    Book  Google Scholar 

  3. Murray, S. P., Hecht, A. & Babcock, A. J. mar. Res. 42, 265–287 (1984).

    Article  Google Scholar 

  4. Paldor, N. & Anati, D. A. Deep-Sea Res. 26, 661–672 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Wolf-Vecht, A., Paldor, N. & Brenner, S. Deep-Sea Res. 39, 1393–1401 (1992).

    Article  ADS  Google Scholar 

  6. Knauss, J. A. Introduction to Physical Oceanography (Prentice-Hall, New Jersey, 1978).

    Google Scholar 

  7. Benayahu, Y. & Loya, Y. Proc. 3rd Int. Coral Reef Symp. (ed. Taylor, D. L.) 383–389 (Univ. Miami, 1977).

    Google Scholar 

  8. Sverdrup, H. U. J. Cons. perm. Int. Explor. Mer. 18, 287–295 (1953).

    Article  Google Scholar 

  9. Levitus, S. Climatological Atlas of the World Ocean (NOAA Prof. Pap. 13, US Dept of Commerce, Washington DC. 1982).

    Google Scholar 

  10. Venrick, E. L. Limnol. Oceanogr. 38, 1135–1149 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Guzman, H. M., Cortes, J., Glynn, P. W. & Richmond, R. H. Mar. Ecol. Prog. Ser. 60, 299–303 (1990).

    Article  ADS  Google Scholar 

  12. Jokiel, P. L. & Coles, S. L. Mar. Biol. 43, 201–208 (1977).

    Article  Google Scholar 

  13. Luhr, J. F. Nature 354, 104–105 (1991).

    Article  ADS  Google Scholar 

  14. Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J. & Walter, L. S. Geophys. Res. Lett. 19, 151–154 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Graf, H.-F., Kirchner, I., Robock, A. & Schult, I. Clim. Dyn. 9, 81–93 (1993).

    Article  Google Scholar 

  16. Hansen, J., Lacis, A., Ruedy, R. & Sato, M. Geophys. Res. Lett. 19, 215–218 (1992).

    Article  ADS  Google Scholar 

  17. Dutton, E. & Christy, J. R. Geophys. Res. Lett. 19, 2313–2316 (1992).

    Article  ADS  Google Scholar 

  18. Graf, H.-F., Perlwitz, J. & Kirchner, I. Beitr. Phys. Atmosph. 67, 3–13 (1994).

    Google Scholar 

  19. Brenner, S., Rosentraub, Z., Bishop, J. & Krom, M. Dyn. Atmos. Oceans 15, 457–476 (1991).

    Article  ADS  Google Scholar 

  20. Halpert, M. S. et al. Eos 74, 433–438 (1993).

    Article  ADS  Google Scholar 

  21. Kirchner, I. & Graf, H.-F. Max-Planck-Inst. Mete. Rep. 121, 1–57 (1993).

    Google Scholar 

  22. Dunbar, R. B. & Wellington, G. M. Nature 293, 453–455 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Shen, G. T. et al. Paleoceanography 7, 563–588 (1992).

    Article  ADS  Google Scholar 

  24. Venrick, E. L., & Hayward, T. L. Calif. Coop. ocean. Fish. Invest Rep. 25, 74–79 (1984).

    Google Scholar 

  25. Wyrtki, K. J. geophys. Res. 70, 4547–4559 (1965).

    Article  ADS  Google Scholar 

  26. Kondo, J. Bound. Layer Met. 9, 91–112 (1975).

    Article  ADS  Google Scholar 

  27. Mellor, G. L. & Yamada, T. J. Atmos. Sci. 31, 1791–1806 (1974).

    Article  ADS  Google Scholar 

  28. Mellor, G. L. & Yamada, T. Rev. Geophys. Space Phys. 20, 851–875 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genin, A., Lazar, B. & Brenner, S. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377, 507–510 (1995). https://doi.org/10.1038/377507a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377507a0

  • Springer Nature Limited

This article is cited by

Navigation