Skip to main content
Log in

Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE synthesis of fullerenes encapsulating various metal atoms within the carbon cage (endohedral metallofullerenes) has stimulated wide interest1,2 because of their unusual structural and electronic properties. Most of the metallofullerenes prepared so far have been based on C82, and have incorporated lanthanum1,3á¤-5, yttrium6,7, scandium8á¤-10 and most of the lanthanide elements11,12′. Although there has been some debate about the endohedral nature of these compounds2,13,14, observations using scanning tunnelling microscopy15,16, extended X-ray absorption fine structure17,18, transmission electron microscopy19 and electron spin resonance3,6á¤-8,10 have strongly suggested that the metal atoms are indeed inside the fullerene cages; theoretical calculations20,21 also indicate that this is the case. But until now, no structural model has been derived experimentally to confirm the endohedral nature of the metallofullerenes. Here we report the results of a synchrotron X-ray powder diffraction study of Y@C82 that confirms that the yttrium atom is located within the carbon cage. The yttrium atom is displaced from the centre of the C82 molecule and is strongly bound to the carbon cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chai, Y. et al. J. phys. Chem. 95, 7564–7568 (1991).

    Article  CAS  Google Scholar 

  2. Bethune, D. S., Johnson, R. D., Salem, J. R., de Vries, M. S. & Yannoni, C. S. Nature 366, 123–128 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Johnson, R. D., de Vries, M. S., Salem, J. R., Bethune, D. S. & Yannoni, C. S. Nature 355, 239–240 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Alvarez, M. M. et al. J. phys. Chem. 95, 10561–10563 (1991).

    Article  CAS  Google Scholar 

  5. Kikuchi, K. et al. Chem. Phys. Lett. 162, 67–70 (1993).

    Article  ADS  Google Scholar 

  6. Weaver, J. H. et al. Chem. Phys. Lett. 190, 460–464 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Shinohara, H., Sato, H., Saito, Y., Ohkochi, M. & Ando, Y. J. phys. Chem. 96, 3571–3573 (1992).

    Article  CAS  Google Scholar 

  8. Shinohara, H. et al. Nature 357, 52–54 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Shinohara, H. et al. Mater. Sci. Engng B19, 25–30 (1993).

    Article  Google Scholar 

  10. Yannoni, C. S. et al. Science 256, 1191–1192 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Gillan, E. et al. J. phys. Chem. 96, 6869–6871 (1992).

    Article  CAS  Google Scholar 

  12. Moro, L., Ruoff, R. S., Becker, C. H., Lorents, D. C. & Malhotra, R. J. phys. Chem. 97, 6801–6804 (1993).

    Article  CAS  Google Scholar 

  13. Soderhom, L., Wurz, P., Lykke, K. R., Parker, D. H. & Lytle, F. W. J. phys. Chem. 96, 7153–7156 (1992).

    Article  Google Scholar 

  14. Suematsu, H. et al. MRS Symp. Proc. Ser. 349, 213–215 (1994).

    Article  CAS  Google Scholar 

  15. Shinohara, H. et al. J. phys. Chem. 97, 13438–13440 (1993).

    Article  CAS  Google Scholar 

  16. Hashizume, T. et al. Jap. J. Appl. phys. 31, L880–L883 (1992).

    Article  CAS  Google Scholar 

  17. Park, C. et al. Chem. Phys. Lett. 213, 196–201 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Kikuchi, K., Nakao, Y., Achiba, Y. & Nomura, M. in Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes (eds Kadish, K. & Ruoff, R. S.) 1300–1308 (ECS, San Francisco, 1994).

    Google Scholar 

  19. Beyers, R. et al. Nature 370, 196–199 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Laasonen, K., Andreoni, W. & Parrinello, M. Science 258, 1916–1918 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Nagase, S. & Kobayasi, K. Chem. Phys. Lett. 214, 57–63 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Shinohara, H. et al. J. phys. Chem. 97, 4259–4261 (1993).

    Article  CAS  Google Scholar 

  23. Takata, M., Yamada, M., Kubota, Y. & Sakata, M. Adv. X-ray Anal. 35, 85–90 (1992).

    Google Scholar 

  24. Kawada, H. et al. Phys. Rev. B51, 8723–8730 (1995).

    Article  CAS  Google Scholar 

  25. Rietveld, H. M. J. appl. Crystallogr. 2, 65–71 (1968).

    Article  Google Scholar 

  26. Toraya, H. & Marumo, F. Report of the Research Laboratory of Engineering Materials Vol 5, 55–64 (Tokyo Institute of Technology, 1980).

    Google Scholar 

  27. Collins, D. M. Nature 298, 49–51 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Bricogne, G. Acta crystallogr. A44, 517–545 (1988).

    Article  MathSciNet  Google Scholar 

  29. Sakata, M. & Sato, M. Acta crystallogr. A46, 263–270 (1990).

    Article  Google Scholar 

  30. Kumazawa, S., Kubota, Y., Takata, M., Sakata, M. & Ishibashi, Y. J. appl. Crystallogr. 26, 453–457 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takata, M., Umeda, B., Nishibori, E. et al. Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377, 46–49 (1995). https://doi.org/10.1038/377046a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377046a0

  • Springer Nature Limited

This article is cited by

Navigation