Skip to main content
Log in

Structural basis for DNA bending by the architectural transcription factor LEF-1

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

LYMPHOID enhancer-binding factor (LEF-1) and the closely related T-cell factor 1 (TCF-1) are sequence-specific and cell-type-specific DNA-binding proteins that play important regulatory roles in organogenesis and thymocyte differentiation1–5. LEF-1 participates in regulation of the enhancer associated with the T cell receptor (TCR)-α gene by inducing a sharp bend in the DNA and facilitating interactions between Ets-1, PEBP2-α, and ATF/ CREB transcription factors bound at sites flanking the LEF-1 site1,2,6,7. It seems that LEF-1 plays an architectural role in the assembly and function of this regulatory nucleoprotein complex7,8. LEF-1 recognizes a specific nucleotide sequence through a high-mobility-group (HMG) domain1,2. Proteins containing HMG domains bind DNA in the minor groove, bend the double helix6,9,10, and recognize four-way junctions and other irregular DNA structures9,11. Here we report the solution structure of a complex of the LEF-1 HMG domain and adjacent basic region with its cognate DNA. The structure reveals the HMG domain bound in the widened minor groove of a markedly distorted and bent double helix. The basic region binds across the narrowed major groove and contributes to DNA recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Travis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. Genes Dev. 5, 880–894 (1991).

    Article  CAS  Google Scholar 

  2. Waterman, M. L., Fischer, W. H. & Jones, K. A. Genes Dev. 5, 656–669 (1991).

    Article  CAS  Google Scholar 

  3. Oosterwegel, M. et al. J. exp. Med. 173, 1133–1142 (1991).

    Article  CAS  Google Scholar 

  4. Van Genderen, C. et al. Genes Dev. 8, 2691–2703 (1994).

    Article  CAS  Google Scholar 

  5. Verbeek, S. et al. Nature 374, 70–74 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Giese, K., Cox, J. & Grosschedl, R. Cell 69, 185–195 (1992).

    Article  CAS  Google Scholar 

  7. Giese, K., Kingsley, C., Kirshner, J. R. & Grosschedl, R. Genes Dev. 9, 995–1008 (1995).

    Article  CAS  Google Scholar 

  8. Grosschedl, R., Giese, K. & Pagel, J. Trends Genet. 10, 94–100 (1994).

    Article  CAS  Google Scholar 

  9. Ferrari, S. et al. EMBO J. 11, 4497–4506 (1992).

    Article  CAS  Google Scholar 

  10. Paull, T. T., Haykinson, M. J. & Johnson, R. C. Genes Dev. 7, 1521–1534 (1993).

    Article  CAS  Google Scholar 

  11. Pil, P. M. & Lippard, S. J. Science 256, 234–237 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Weir, H. M. et al. EMBO J. 12, 1311–1319 (1993).

    Article  CAS  Google Scholar 

  13. Read, C. M., Cary, P. D., Crane-Robinson, C., Driscoll, P. C. & Norman, D. G. Nucleic Acids Res. 21, 3427–3436 (1993).

    Article  CAS  Google Scholar 

  14. Jones, D. N. M. et al. Structure 2, 609–627 (1994).

    Article  CAS  Google Scholar 

  15. Giese, K., Amsterdam, A. & Grosschedl, R. Genes Dev. 5, 2567–2578 (1991).

    Article  CAS  Google Scholar 

  16. van de Wetering, M. & Clevers, H. EMBO J. 11, 3039–3044 (1992).

    Article  CAS  Google Scholar 

  17. Peters, R. et al. Biochemistry 34, 4569–4576 (1995).

    Article  CAS  Google Scholar 

  18. Carlsson, P., Waterman, M. L. & Jones, K. A. Genes Dev. 7, 2418–2430 (1993).

    Article  CAS  Google Scholar 

  19. Read, C. M., Cary, P. D., Preston, N. S., Lnenicek-Allen, M. & Crane-Robinson, C. EMBO J. 13, 5639–5646 (1994).

    Article  CAS  Google Scholar 

  20. Harley, V. R., Lovell-Badge, R. & Goodfellow, P. N. Nucleic Acids Res. 22, 1500–1501 (1994).

    Article  CAS  Google Scholar 

  21. Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Nature 365, 512–520 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Kim, J. L., Nikolov, D. B. & Burley, S. K. Nature 365, 520–528 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Schumacher, M. A., Choi, K. Y., Zalkin, H. & Brennan, R. G. Science 266, 763–770 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. & Bax, A. J. Am. chem. Soc. 111, 1515–1517 (1989).

    Article  CAS  Google Scholar 

  25. Güntert, P., Braun, W. & Wüthrich, K. J. molec. Biol. 217, 517–530 (1991).

    Article  Google Scholar 

  26. Güntert, P. & Wüthrich, K. J. Biomol. NMR 1, 447–456 (1991).

    Article  Google Scholar 

  27. Weiner, S. J., Kollman, P. A., Nguyen, D. T. & Case, D. A. J. comput. Chem. 7, 230–252 (1986).

    Article  CAS  Google Scholar 

  28. Seip, S., Balbach, J. & Kessler, H. J. magn. Reson. B104, 172–179 (1994).

    Article  CAS  Google Scholar 

  29. Otting, G. & Wüthrich, K. Q. Rev. Biophys. 23, 39–96 (1990).

    Article  CAS  Google Scholar 

  30. Lavery, R. & Sklenár, V. J. biomolec. Struct. Dyn. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  31. Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. Cell 81, 705–714 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, J., Li, X., Case, D. et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791–795 (1995). https://doi.org/10.1038/376791a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376791a0

  • Springer Nature Limited

This article is cited by

Navigation