Skip to main content
Log in

Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN the budding yeast Saccharomyces cerevisiae, the process of conjugation of haploid cells of genotype MATa and MATαto form MATa/α diploids is triggered by pheromones produced by each mating type. These pheromones stimulate a cellular response by interaction with receptors linked to a heterotrimeric G protein. Although genetic analysis indicates that the pheromone signal is transmitted through the Gβγ dimer, the initial target(s) of G protein activation remain to be determined. Temperature-sensitive cells with mutations of the CDC24 and CDC42 genes, which are incapable of budding and of generating cell polarity at the restrictive temperature1–3, are also unable to mate4. Cdc24 acts as a guanylyl-nucleotide-exchange factor for the Rho-type GTPase Cdc425, which has been shown to be a fundamental component of the molecular machinery controlling morphogenesis in eukaryotic cells6–10. Therefore, the inability of cdc24 and cdc42 mutants to mate has been presumed to be due to a requirement for generation of cell polarity and related morphogenetic events during conjugation. But here we show that Cdc42 has a direct signalling role in the mating-pheromone response between the G protein and the downstream protein kinase cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartwell, L. H., Mortimer, R. K., Culotti, J. & Culotti, M. Genetics 74, 267–286 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sloat, B. F., Adams, A. E. M. & Pringle, J. R. J. Cell Biol. 89, 395–405 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, A. E. M., Johnson, D. I., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. J. Cell Biol. 111, 131–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Reid, B. J. & Hartwell, L. H. J. Cell Biol. 75, 355–365 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, Y., Cerione, R. & Bender, A. J. biol. Chem. 269, 2369–2372 (1994).

    CAS  PubMed  Google Scholar 

  6. Munemitsu, S. et al. Molec. cell. Biol. 10, 5977–5982 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shinjo, K. et al. Proc. natn. Acad. Sci. U.S.A. 87, 9853–9857 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Miller, P. J. & Johnson, D. I. Molec. cell. Biol. 14, 1075–1083 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang, E. et al. Cell 79, 131–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, W., Lim, H. H. & Lim, L. J. biol. Cnem. 268, 13280–13285 (1993).

    CAS  Google Scholar 

  11. Oehlen, L. J. W. M. & Cross, F. R. Genes Dev. 8, 1058–1070 (1993).

    Article  Google Scholar 

  12. Leberer, E., Dignard, D., Harcus, D., Thomas, D. Y. & Whiteway, M. EMBO J. 11, 4815–4824 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramer, S. W. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 90, 452–456 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. & Lim, L. Nature 367, 40–46 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Segall, J. E. Proc. natn. Acad. Sci. U.S.A. 90, 8332–8336 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Jackson, C. L., Konopka, J. B. & Hartwell, L. H. Cell 67, 389–402 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Ziman, M. et al. Molec. Biol. Cell 4, 1307–1316 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fields, S. & Sternglanz, R. Trends Genet. 10, 286–292 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. Cell 75, 791–803 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Johnson, D. I. & Pringle, J. R. J. Cell Biol. 111, 143–152 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Ziman, M., O'Brien, J. M., Ouellette, L. A., Church, W. R. & Johnson, D. I., Molec. Cell. Biol. 11, 3537–3544 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Madaule, P., Axel, R. & Myers, A. M. Proc. natn. Acad. Sci. U.S.A. 84, 779–783 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Matsui, Y. & Toh-e, A. Gene 114, 43–49 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Powers, S. et al. Cell 36, 607–612 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Hutter, K. J. & Eipel, H. E. J. gen. Microbiol. 113, 369–375 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Martin, G. A., Bollag, G., McCormick, F. & Abo, A. EMBO J. 14, 1970–1978 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bender, A. & Pringle, J. R. Yeast 8, 315–323 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Richardson, H. E., Wittenberg, C., Cross, F. & Reed, S. I. Cell 59, 1127–1133 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Elble, R. Biotechniques 13, 18–19 (1989).

    Google Scholar 

  30. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory Press, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, MN., Virgilio, C., Souza, B. et al. Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway. Nature 376, 702–705 (1995). https://doi.org/10.1038/376702a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376702a0

  • Springer Nature Limited

This article is cited by

Navigation