Skip to main content
Log in

Autocrine mitogenic activity of pheromones produced by the protozoan ciliate Euplotes raikovi

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DIFFUSIBLE polypeptide pheromones (formerly referred to as mating-type factors, sex factors or gamones), which distinguish otherwise morphologically identical vegetative cell (mating) types from one another, are produced by some species of ciliates1,2. Their most striking effect can be observed by exposing cells of one type to a pheromone secreted by another co-specific cell type3. In the presence of this ᤘnon-self ᤙ signal, these cells interrupt their vegetative life to unite temporarily in mating pairs. Thus ciliate pheromones have traditionally been associated only with mating induction2,4. However, the identification of autocrine pheromone receptors5,6 suggests a broader role, which is supported by the hypothesis that ciliates evolved their mating-type mechanism for pursuing self-recognition1. We now report studies, in the cosmopolitan marine sand-dwelling protozoan ciliate Euplotes raikovi, demonstrating that these molecules promote the vegetative reproduction (mitogenic proliferation or growth) of the same cells from which they originate. As, understandably, such autocrine pheromone activity is primary to that of targeting and inducing a foreign cell to mate (paracrine functions), this finding provides an example of how the original function of a molecule can be obscured during evolution by the acquisition of a new one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luporini, P. & Miceli, C. in The Molecular Biology of Ciliated Protozoa (ed. Gall, J. G.) 263–299 (Academic, New York, 1986).

    Book  Google Scholar 

  2. Miyake, A. in Biochemistry and Physiology of Protozoa 2nd edn (eds Levandowsky, M. & Hunter, S. H.) 125–198 (Academic, New York, 1981).

    Google Scholar 

  3. Beale, G. H. Trends Genet. 6, 137–139 (1990).

    Article  CAS  Google Scholar 

  4. Kühlmann, H. W. & Heckmann, K. J. exp. Zool. 251, 316–328 (1989).

    Article  Google Scholar 

  5. Ortenzi, C., Miceli, C., Bradshaw, R. A. & Luporini, P. J. Cell Biol. 111, 607–614 (1990).

    Article  CAS  Google Scholar 

  6. Luporini, P., Miceli, C., Ortenzi, C. & Vallesi, A. Devl Genet. 13, 9–15 (1992).

    Article  CAS  Google Scholar 

  7. Miceli, C., La Terza, A., Bradshaw, R. A. & Luporini, P. Eur. J. Biochem. 202, 759–764 (1991).

    Article  CAS  Google Scholar 

  8. Raffioni, S. et al. Proc. natn. Acad. Sci. U.S.A. 89, 2071–2075 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Luporini, P., Raffioni, S., Concetti, A. & Miceli, C. Proc. natn. Acad. Sci. U.S.A. 83, 2889–2893 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Stewart, A. E. et al. Protein Sci. 1, 777–785 (1992).

    Article  CAS  Google Scholar 

  11. Brown, L. R. et al. J. molec. Biol. 231, 800–816 (1993).

    Article  CAS  Google Scholar 

  12. Ottiger, M. et al. Protein Sci. 3, 1515–1526 (1994).

    Article  CAS  Google Scholar 

  13. Mronga, S. et al. Protein Sci. 3, 1527–1536 (1994).

    Article  CAS  Google Scholar 

  14. Luginbühl, P., Ottiger, M., Mronga, S. & Wüthrich, K. Protein Sci. 3, 1537–1547 (1994).

    Article  Google Scholar 

  15. Concetti, A., Raffioni, S., Miceli, C., Barra, D. & Luporini, P. J. biol. Chem. 261, 10582–10586 (1986).

    CAS  PubMed  Google Scholar 

  16. Olins, D. E. & Olins, A. L. Int. Rev. Cytol. 153, 137–170 (1994).

    Article  CAS  Google Scholar 

  17. Miceli, C., La Terza, A., Bradshaw, R. A. & Luporini, P. Proc. natn. Acad. Sci. U.S.A. 89, 1988–1992 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Luporini, P., Vallesi, A., Miceli, C. & Bradshaw, R. A. Ann. N.Y. Acad. Sci. 712, 195–205 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Singer, S. J. A. Rev. Cell Blol. 6, 247–296 (1990).

    Article  CAS  Google Scholar 

  20. Wells, J. A. Curr. Opin. Cell Biol. 6, 163–174 (1994).

    Article  CAS  Google Scholar 

  21. Heldin, C.-H. Cell 80, 213–225 (1995).

    Article  CAS  Google Scholar 

  22. Whitbread, J. A., Sims, M. & Katz, E. R. Devl Genet. 12, 78–81 (1991).

    Article  CAS  Google Scholar 

  23. Parfenova, E. V., Afonkin, S., Yudin, A. L. & Etingof, R. N. Acta protozool. 28, 11–21 (1989).

    CAS  Google Scholar 

  24. Tanabe, H. et al. Biochem. biophys. Res. Commun. 170, 786–792 (1990).

    Article  CAS  Google Scholar 

  25. Takagi, Y. et al. Zool. Sci. 10, 53–56 (1994).

    Google Scholar 

  26. Ortenzi, C. & Luporini, P. J. Euk. Microbiol. 42, 242–248 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallesi, A., Giuli, G., Bradshaw, R. et al. Autocrine mitogenic activity of pheromones produced by the protozoan ciliate Euplotes raikovi. Nature 376, 522–524 (1995). https://doi.org/10.1038/376522a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376522a0

  • Springer Nature Limited

This article is cited by

Navigation