Skip to main content
Log in

Direct and continuous assessment by cells of their position in a morphogen gradient

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ACCORDING to the morphogen gradient concept1á¤-5, cells in one part of an embryo secrete diffusible molecules (morphogens) that spread to other nearby cells and activate genes at different threshold concentrations. Strong support for the operation of a morphogen gradient mechanism in vertebrate development has come from the biochemical experiments of Green and Smith6,7, who induced different kinds of gene expression in amphibian blastula cells exposed to small changes in activin concentration. But the interpretation of these experiments has been complicated by recent reports8á¤-10 that cells tested for gene expression 3 hours after exposure to activin fail to show the graded response previously reported at 15 hours6,7, a result suggesting that cells recognize their position in a gradient by an indirect mechanism. Here we conclude from the in situ analysis of blastula tissue containing activin-loaded beads11 that cells respond directly to changing morphogen concentrations, in a way that resembles a ratchet-like process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolpert, L. Development (suppl.) 107, 3–12 (1989).

    PubMed  Google Scholar 

  2. Lawrence, P. A. Cell 54, 1–2 (1988).

    Article  CAS  Google Scholar 

  3. Brickell, P. & Tickle, S. BioEssays 11, 145–149 (1989).

    Article  CAS  Google Scholar 

  4. Slack, J. M. W. From Egg to Embryo 2nd edn (Cambridge Univ. Press, 1991).

    Book  Google Scholar 

  5. Cooke, J. BioEssays 17, 93–96 (1995).

    Article  CAS  Google Scholar 

  6. Green, J. B. A. & Smith, J. C. Nature 347, 391–394 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Green, J. B. A., New, H. V. & Smith, J. C. Cell 71, 731–739 (1992).

    Article  CAS  Google Scholar 

  8. Green, J. B. A., Smith, J. C. & Gerhart, J. C. Development 120, 2271–2278 (1994).

    CAS  PubMed  Google Scholar 

  9. Symes, K., Yordan, C. & Mercola, M. Development 120, 2339–2346 (1994).

    CAS  PubMed  Google Scholar 

  10. Wilson, P. A. & Melton, D. A. Curr. Biol. 4, 676–686 (1994).

    Article  CAS  Google Scholar 

  11. Gurdon, J. B., Harger, P., Mitchell, A. & Lemaire, P. Nature 371, 487–902 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D. & Hermann, B. G. Cell 67, 79–87 (1991).

    Article  CAS  Google Scholar 

  13. Gurdon, J. B., Fairman, S., Mohun, T. J. & Brennan, S. Cell 41, 913–922 (1985).

    Article  CAS  Google Scholar 

  14. Symes, K. & Smith, J. C. Development 101, 339–349 (1987).

    Google Scholar 

  15. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North-Holland, Amsterdam, 1956).

    Google Scholar 

  16. Cho, K. W. Y., Blumberg, B., Steinbeisser, H. & De Robertis, E. M. Cell 67, 1111–1120 (1991).

    Article  CAS  Google Scholar 

  17. Jones, E. A. & Woodland, H. R. Development 101, 557–563 (1987).

    Google Scholar 

  18. Thomsen, G. H. & Melton, D. A. Cell 74, 433–441 (1993).

    Article  CAS  Google Scholar 

  19. Vize, P. D. & Thomsen, G. H. Trends Genet. 10, 371–376 (1994).

    Article  CAS  Google Scholar 

  20. Schulte-Merker, S., Smith, J. C. & Dale, L. EMBO J. 13, 3533–3541 (1994).

    Article  CAS  Google Scholar 

  21. Ferguson, E. L. & Anderson, K. V. Cell 71, 451–461 (1992).

    Article  CAS  Google Scholar 

  22. Jiang, J. & Levine, M. Cell 72, 741–752 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurdon, J., Mitchell, A. & Mahony, D. Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376, 520–521 (1995). https://doi.org/10.1038/376520a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376520a0

  • Springer Nature Limited

This article is cited by

Navigation