Skip to main content
Log in

Absence of radius and ulna in mice lacking hoxa-11 andhoxd-11

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MICE with targeted disruptions1 in Hoxgenes have been generated to evaluate the role of the Hox complex in determining the mammalian body plan. This complex of 38 genes encodes transcription factors that specify regional information along the embryonic axes. Early in vertebrate evolution an ancestral complex shared with invertebrates was duplicated twice to give rise to the four linkage groups (Hox A, B, C and D)2,3. As a consequence, corresponding genes on the separate linkage groups, called paralogues, are most closely related to each other. Based on sequence similarities, the Hox genes have been subdivided into 13 paralogous groups. The five most 5′ groups (Hox9–13) pattern the posterior region of the vertebrate embryo and the appendicular skeleton4–18. Mice with individual mutations in the paralogous genes hoxa-11 and hoxd-11 have been described15–18. By breeding these two strains together we have generated double mutants which have dramatic phenotypes not apparent in mice homozygous for the individual mutations. The radius and the ulna of the forelimb are almost entirely eliminated, the axial skeleton shows homeotic transformations, and there are severe kidney defects not present in either single mutant. The limb and axial phenotypes are quantitative: as more mutant alleles are added to the genotype, the phenotype becomes progressively more severe. The appendicular skeleton defects suggest that paralogous Hoxgenes function together to specify limb outgrowth and patterning along the proximodistal axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capecchi, M. R. Scient Am. 270, 54–61 (1994).

    Article  Google Scholar 

  2. Holland, P. W. H., Garcia-Fernandez, J., Williams, N. A. & Sidow, A. Development (Suppl.), 125–133 (1994).

  3. Ruddle, F. H. et al. A. Rev. Genet. 28, 423–442 (1994).

    Article  CAS  Google Scholar 

  4. Dollé, P., Izpisúa-Belmonte, J.-C., Falkenstein, H., Renucci, A. & Duboule, D. Nature 342, 767–772 (1989).

    Article  ADS  Google Scholar 

  5. Dollé, P., Izpisúa-Belmonte, J.-C., Brown, J. M., Tickle, C. & Duboule, D. Genes Dev. 5, 1767–1776 (1991).

    Article  Google Scholar 

  6. Duboule, D. Curr. Opin. Genet. Dev. 1, 211–216 (1991).

    Article  CAS  Google Scholar 

  7. Izpisúa-Belmonte, J.-C., Tickle, C., Dollé, P., Wolpert, L. & Duboule, D. Nature 350, 585–589 (1991).

    Article  ADS  Google Scholar 

  8. Izpisúa-Belmonte, J.-C., Falkenstein, H., Dollé, P., Renucci, A. & Duboule, D. EMBO J. 10, 2279–2289 (1991).

    Article  Google Scholar 

  9. Yokouchi, Y., Sasaki, H. & Kuroiwa, A. Nature 353, 443–445 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Duboule, D. BioEssays 14, 375–384 (1992).

    Article  CAS  Google Scholar 

  11. Izpisúa-Belmonte, J.-C. & Duboule, D. Devl Biol. 152, 26–36 (1992).

    Article  Google Scholar 

  12. Morgan, B. A., Izpisúa-Belmonte, J.-C., Duboule, D. & Tabin, C. Nature 358, 236–239 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Dollé, P. et al. Cell 75, 431–441 (1993).

    Article  Google Scholar 

  14. Haack, H. & Gruss, P. Devl Biol. 157, 410–422 (1993).

    Article  CAS  Google Scholar 

  15. Small, K. M. & Potter, S. S. Genes Dev. 7, 2318–2328 (1993).

    Article  CAS  Google Scholar 

  16. Davis, A. P. & Capecchi, M. R. Development 120, 2187–2198 (1994).

    CAS  PubMed  Google Scholar 

  17. Favier, B., Le Meur, M., Chambon, P. & Dollé, P. Proc. natn. Acad. Sci. U.S.A. 92, 310–314 (1994).

    Article  ADS  Google Scholar 

  18. Li, H. M. H. et al. Development 121, 1373–1385 (1995).

    PubMed  Google Scholar 

  19. Condie, B. G. & Capecchi, M. R. Nature 370, 304–307 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Rancourt, D. E., Tsuzuki, T. & Capecchi, M. R. Genes Dev. 9, 108–122 (1995).

    Article  CAS  Google Scholar 

  21. Shubin, N. H. & Alberch, P. Evol. Biol. 20, 319–387 (1986).

    Google Scholar 

  22. Oster, G. F., Shubin, N., Murray, J. D. & Alberch, P. Evolution 42, 862–884 (1988).

    Article  Google Scholar 

  23. Duboule, D. Science 266, 575–576 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Tabin, C. Cell 80, 671–674 (1995).

    Article  CAS  Google Scholar 

  25. Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. Cell 75, 579–587 (1993).

    Article  CAS  Google Scholar 

  26. Fallon, J. F. et al. Science 264, 104–107 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Niswander, L., Jeffrey, S., Martin, G. R. & Tickle, C. Nature 371, 609–612 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Cohn, M. J., Izpisúa-Belmonte, J.-C., Abud, H., Heath, J. K. & Tickle, C. Cell 80, 739–746 (1995).

    Article  CAS  Google Scholar 

  29. Peterson, R. L., Papenbrock, T., Davda, M. M. & Awgulewitsch, A. Mech. Dev. 47, 253–260 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, A., Witte, D., Hsieh-Li, H. et al. Absence of radius and ulna in mice lacking hoxa-11 andhoxd-11. Nature 375, 791–795 (1995). https://doi.org/10.1038/375791a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375791a0

  • Springer Nature Limited

This article is cited by

Navigation