Skip to main content
Log in

Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE identity and patterning of ventral cell types in the vertebrate central nervous system depends on cell interactions1. For example, induction of a specialized population of ventral midline cells, the floor plate, appears to require contact-mediated signalling by the underlying notochord, whereas diffusible signals from the noto-chord and floor plate can induce ventrolaterally positioned motor neurons. Sonic hedgehog (Shh), a vertebrate hedgehog-family member, is processed to generate two peptides (Mr 19K and 26/27K) which are secreted by both of these organizing centres2,30. Moreover, experiments in a variety of vertebrate embryos3-5, and in neural explants in vitro5, indicate that Shh can mediate floor-plate induction. Here we have applied recombinant Shh peptides to neural explants in serum-free conditions. High concentrations of Shh bound to a matrix induce floor plate and motor neurons, and addition of Shh to the medium leads to dose-dependent induction of motor neurons. All inducing activity resides in a highly conserved amino-terminal peptide (Mr 19K). Moreover, antibodies that specifically recognize this peptide block induction of motor neurons by the notochord. We propose that Shh acts as a morphogen to induce distinct ventral cell types in the vertebrate central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, J. C. Curr. Biol. 3, 582–585 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Bumcrot, D. A., Takada, R. & McMahon, A. P. Molec. cell. Biol. 15, 2294–2303 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Echelard, Y. et al. Cell 75, 1417–1430 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Krauss, S., Concordet, J.-P. & Ingham, P. W. Cell 75, 1431–1444 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Roelink, H. et al. Cell 76, 761–775 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Fietz, M. J. et al. Development (Suppl.) 120, 43–51 (1994).

    Google Scholar 

  7. Mohler, J. Genetics 120, 1061–1072 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, J. L., von Kessler, D. P., Parks, S. & Beachy, P. Cell 71, 33–50 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Ingham, P. W. Nature 366, 560–562 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Heberlein, U., Wolff, T. & Rubin, G. M. Cell 75, 913–926 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Ma, C., Zhou, Y., Beachy, P. A. & Moses, K. Cell 75, 927–938 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Tabata, T. & Kornberg, T. B. Cell 76, 89–102 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Heemskerk, J. & DiNardo, S. Cell 76, 449–460 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Basler, K. & Struhl, G. Nature 368, 208–214 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Díaz-Benjumea, F. J., Cohen, B. & Cohen, S. M. Nature 372, 175–179 (1994).

    Article  ADS  PubMed  Google Scholar 

  16. Lee, J. J. et al. Science 266, 1528–1537 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ingham, P. W. & Fietz, M. J. Curr. Biol. 5(4), 432–441 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Cell 75, 1401–1416 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, D. T. et al. Development 120, 3339–3353 (1994).

    CAS  PubMed  Google Scholar 

  20. Porter, J. A. et al. Nature 374, 363–366 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hamburger, V. & Hamilton, H. L. J. Morph. 88, 49–92 (1951).

    Article  CAS  PubMed  Google Scholar 

  22. Tsuchida, T. et al. Cell 79, 957–970 (1995).

    Article  Google Scholar 

  23. Tanaka, H. & Obata, K. Devl Biol. 106, 26–37 (1984).

    Article  CAS  Google Scholar 

  24. Yamada, T., Placzek, M., Tanaka, H., Dodd, J. & Jessell, T. M. Cell 64, 635–647 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Thor, S., Ericson, J., Brännström, T. & Edlund, T. Neuron 7, 881–889 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Yamada, T., Pfaff, S. L., Edlund, T. & Jessell, T. M. Cell 73, 673–686 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Fietz, M. J., Jacinto, A., Taylor, A. M., Alexandre, C. & Ingham, P. W. Curr. Biol. (in the press).

  28. Hynes, M., Poulsen, K., Tessier-Lavigne, M. & Rosenthal, A. Cell 80, 95–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Dubendorff, J. W. & Studier, F. W. J. molec. Biol. 219, 45–59 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Marti, E., Takada, R., Bumcrot, D. A., Sasaki, H. & McMahon, A. P. Development (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marti, E., Bumcrot, D., Takada, R. et al. Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325 (1995). https://doi.org/10.1038/375322a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375322a0

  • Springer Nature Limited

This article is cited by

Navigation