Skip to main content
Log in

Spectroscopic evidence against nitric acid trihydrate in polar stratospheric clouds

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

HETEROGENEOUS reactions on polar stratospheric clouds (PSCs) play a key role in the photochemical mechanism thought to be responsible for ozone depletion in the Antarctic and the Arctic1,2. Reactions on PSC particles activate chlorine to forms that are capable of photochemical ozone destruction, and sequester nitrogen oxides (NOx) that would otherwise deactivate the chlorine3,4. Although the heterogeneous chemistry is now well established, the composition of the clouds themselves is uncertain. It is commonly thought that they are composed of nitric acid trihydrate3, although observations have left this question unresolved5–14. Here we reanalyse infrared spectra of type I PSCs obtained in Antarctica in September 198715,16, using recently measured optical constants of the various compounds that might be present in PSCs17. We find that these PSCs were not composed of nitric acid trihydrate but instead had a more complex composition, perhaps that of a ternary solution. Because cloud formation is sensitive to their composition, this finding will alter our understanding of the locations and conditions in which PSCs form. In addition, the extent of ozone loss depends on the ability of the PSCs to remove NOx permanently through sedimentation. The sedimentation rates depend on PSC particle size which in turn is controlled by the composition and formation mechanism14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solomon, S. Nature 347, 347–354 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Toon, O. B. & Turco, R. P. Scient. Amer. 264, 68–74 (1991).

    Article  CAS  Google Scholar 

  3. Toon, O. B., Hamill, P., Turco, R. P. & Pinto, J. Geophys. Res. Lett. 13, 1284–1287 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Schoeberl, M. R. et al. Geophys. Res. Lett. 20, 2511–2514 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Dye, J. E. et al. J. geophys. Res. 97, 8015–8034 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Kawa, S. R. et al. J. geophys. Res. 97, 7925–7938 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Browell, E. V. et al. Geophys. Res. Lett. 17, 385–388 (1990).

    Article  ADS  Google Scholar 

  8. Rosen, J. M., Oltmans, S. J. & Evans, W. F. Geophys. Res. Lett. 16, 791–794 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Worsnop, D. R., Fox, L. E., Zahniser, M. S. & Wofsy, S. C. Science 259, 71–74 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Hanson, D. R. Geophys. Res. Lett. 17, 421–424 (1990).

    Article  ADS  Google Scholar 

  11. Toon, O. B. et al. Science 261, 1136–1140 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Molina, M. J. et al. Science 261, 1418–1423 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Carslaw, K. S. et al. Geophys. Res. Lett. 21, 2479–2482 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Tabazadeh, A. et al. Geophys. Res. Lett. 21, 1619–1622 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Kinne, S. et al. J. geophys. Res. 94, 16481–16491 (1988).

    Article  ADS  Google Scholar 

  16. Toon, G. C. et al. J. geophys. Res. 94, 16571–16596 (1989).

    Article  ADS  Google Scholar 

  17. Toon, O. B., Tolbert, M. A., Koehler, B. G., Middlebrook, A. M. & Jordan, J. J. geophys. Res. 99, 25631–25654 (1994).

    Article  ADS  Google Scholar 

  18. Crutzen, P. J. & Arnold, F. Nature 324, 651–655 (1986).

    Article  ADS  CAS  Google Scholar 

  19. McElroy, M. B., Salawitch, R. J. & Wofsy, S. C. Geophys. Res. Lett. 13, 1296–1299 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Fahey, D. W. et al. J. geophys. Res. 94, 11299–11315 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Pueschel, R. F. et al. J. geophys. Res. 94, 11271–11284 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Hanson, D. & Mauersberger, K. Geophys. Res. Lett. 15, 855–858 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Gandrud, B. W. et al. J. geophys. Res. 94, 11285–11297 (1989).

    Article  ADS  Google Scholar 

  24. Hofmann, D. J., Rosen, J. M., Harder, J. W. & Hereford, J. V. J. geophys. Res. 94, 11253–11270 (1989).

    Article  ADS  Google Scholar 

  25. Koehler, B. G., Middlebrook, A. M. & Tolbert, M. A. J. geophys. Res. 97, 8065–8074 (1992).

    Article  ADS  Google Scholar 

  26. Querry, M. R. & Tyler, I. L. J. chem. Phys. 72, 2495–2499 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Zhang, R., Wooldridge, P. J., Abbatt, J. P. D. & Molina, M. J. J. phys. Chem. 97, 7351–7358 (1993).

    Article  CAS  Google Scholar 

  28. Pitari, G. & Ricciardulli, L. Geophys. Res. Lett. 21, 1791–1794 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Toon, O. B., Turco, R. P. & Hamill, P. Geophys. Res. Lett. 17, 445–448 (1990).

    Article  ADS  Google Scholar 

  30. Peter, Th., Bruhl, C. & Crutzen, P. J. Geophys. Res. Lett. 18, 1465–1468 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toon, O., Tolbert, M. Spectroscopic evidence against nitric acid trihydrate in polar stratospheric clouds. Nature 375, 218–221 (1995). https://doi.org/10.1038/375218a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375218a0

  • Springer Nature Limited

This article is cited by

Navigation