Skip to main content

Advertisement

Log in

RNA polymerase II C-terminal domain required for enhancer-driven transcription

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE RNA polymerase II carboxy-terminal domain (CTD) consists of tandem repeats of the sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser1–3. The CTD may participate in activated transcription through interaction with a high-molecular-weight mediator complex4–6. Such a role would be consistent with observations that some genes are preferentially sensitive to CTD mutations7,8. Here we investigate the function of the mouse RNA polymerase CTD in enhancer-driven transcription. Transcription by a-amanitin-resistant CTD-deletion mutants was tested by transient transfection of tissue culture cells in the presence of α-amanitin in order to inhibit endogenous RNA polymerase II. Removal of most of the CTD abolishes transcriptional activation by all enhancers tested, whereas transcription from promoters driven by Spl, a factor that typically activates housekeeping genes from positions proximal to the initiation sites, is not affected. These findings show that the CTD is essential in mediating 'enhancer'-type activation of mammalian transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corden, J. L., Cadena, D. L., Ahearn, J. Jr & Dahmus, M. E. Proc. natn. Acad. Sci. U.S.A. 82, 7934–7938 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Allison, L. A., Moyle, M., Shales, M. & Ingles, C. J. Cell 42, 599–610 (1985).

    Article  CAS  Google Scholar 

  3. Corden, J. L. & Ingles, C. J., in Transcriptional Regulation (eds McKnight, S. L. & Yamamoto, K. R.) 81–108 (Cold Spring Harbor Laboratory Press, Plainview, New York, 1992).

    Google Scholar 

  4. Thompson, C. M., Koleske, A. J., Chao, D. M. & Young, R. A. Cell 73, 1361–1375 (1993).

    Article  CAS  Google Scholar 

  5. Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. Cell 77, 599–608 (1994).

    Article  CAS  Google Scholar 

  6. Koleske, A. J. & Young, R. A. Nature 368, 466–469 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Allison, L. A. & Ingles, C. J. Proc. natn. Acad. Sci. U.S.A. 86, 2794–2798 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Scafe, C. et al. Nature 347, 491–494 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Bartolomei, M. S. & Corden, J. L. Molec. cell Biol. 7, 586–594 (1987).

    Article  CAS  Google Scholar 

  10. Müller-Storm, H. P., Sogo, J. M. & Schaffner, W. Cell 58, 767–777 (1989).

    Article  Google Scholar 

  11. Zehring, W. A. & Greenleaf, A. L. J. biol. Chem. 265, 8351–8353 (1990).

    CAS  PubMed  Google Scholar 

  12. Buratowski, S. & Sharp, P. A. Molec. cell. Biol. 10, 5562–5564 (1990).

    Article  CAS  Google Scholar 

  13. Bartolomei, M. S., Halden, N. F., Cullen, C. R. & Corden, J. L. Molec. cell. Biol. 8, 330–339 (1988).

    Article  CAS  Google Scholar 

  14. Gerber, H. P., Georgiev, O., Harshman, K. & Schaffner, W. Nucleic Acids Res. 20, 5855–5856 (1992).

    Article  CAS  Google Scholar 

  15. Gill, G., Pascal, E., Tseng, Z. H. & Tjian, R. Proc. natn. Acad. Sci. U.S.A. 91, 192–196 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Guarente, L. Cell 36, 799–800 (1984).

    Article  CAS  Google Scholar 

  17. Banerji, J., Rusconi, S. & Schaffner, W. Cell 27, 299–308 (1981).

    Article  CAS  Google Scholar 

  18. Moreau, P. et al. Nucleic Acids Res. 9, 6047–6068 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Seipel, K., Georgiev, O. & Schaffner, W. EMBO J. 11, 4961–4968 (1992).

    Article  CAS  Google Scholar 

  20. Rusconi, S., Severne, Y., Georgiev, O., Galli, I. & Wieland, S. Gene 89, 211–221 (1990).

    Article  CAS  Google Scholar 

  21. Towbin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Westin, G., Gerster, T., Mueller, M. M., Schaffner, G. & Schaffner, W. Nucleic Acids Res. 15, 6787–6798 (1987).

    Article  CAS  Google Scholar 

  23. Radtke, F. et al. EMBO J. 12, 1355–1362 (1993).

    Article  CAS  Google Scholar 

  24. Schatt, M. D., Rusconi, S. & Schaffner, W. EMBO J. 9, 481–487 (1990).

    Article  CAS  Google Scholar 

  25. Wieland, S., Gail, I., Schatt, M., Severne, Y. & Rusconi, S. in Activation of Hormone and Growth Factor Receptors (eds Sekeris, C. E. & Alexis, M.) 215–225 (Kluwer Academic, Dordrecht, 1990).

    Book  Google Scholar 

  26. Seipel, K., Georgiev, O. & Schaffner, W. EMBO J. 11, 4961–4968 (1992).

    Article  CAS  Google Scholar 

  27. Severne, Y., Wieland, S., Schaffner, W. & Rusconi, S. EMBO J. 7, 2503–2508 (1988).

    Article  CAS  Google Scholar 

  28. Banerji, J., Olson, L. & Schaffner, W. Cell 33, 729–740 (1983).

    Article  CAS  Google Scholar 

  29. Muller M. M., Ruppert, S., Schaffner, W. & Mathias, P. Nature 336, 544–551 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerber, HP., Hagmann, M., Seipel, K. et al. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374, 660–662 (1995). https://doi.org/10.1038/374660a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374660a0

  • Springer Nature Limited

Navigation