Skip to main content
Log in

Large third-order optical nonlinearities in transition-metal oxides

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ADVANCES in the field of optical computing1–3 will require the development of materials that combine a large nonlinear optical response with a fast response time. For many applications, this translates into a third-order nonlinear optical susceptibility, χ(3), in excess of 10−8 e.s.u., and a response time faster than lO ps (ref. 4). Although a wide range of inorganic5–18 and organic19–21 materials have been found to exhibit a large χ(3), either the response times tend to be far too slow or the materials are not sufficiently stable for device applications. Recently, the transition-metal oxide Fe2O3 was found to have a large χ(3) (ref. 22). Here we show that oxides of several other 3d transition metals show a similarly large nonlinear optical response; moreover, we find that a significant contribution to the overall χ(3) (∼10−8 e.s.u. in the case of V2O5) has a response time of the order of 35 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eaton, D. F. Science 253, 281–287 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Kwong, S., Rakuljic, G. A. & Yariv, A. Appl. Phys. Lett. 48, 201–203 (1986).

    Article  ADS  Google Scholar 

  3. Soffer, B. H., Dunning, G. J., Owechko, Y. & Marom, E. Opt. Lett. 11, 118–120 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Nakanishi, H., Matsuda, H. & Okada, S. in Optical Functional Materials 41–105 (Soc. of Polymer Science, Japan, Kyoritsu, Tokyo, 1991).

    Google Scholar 

  5. Nasu, H., Ibara, Y. & Kubodera, K. J. non-cryst. Solids 110, 229–234 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Jain, R. K. & Lind, R. C. J. opt. Soc. Am. 73, 647–653 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Justus, B. L., Seaver, M. E., Ruller, J. A. & Campillo, A. J. Appl. Phys. Lett. 57, 1381–1383 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Hache, F., Ricard, D., Flytzanis, C. & Kreibig, U. Appl. Phys. A47, 347–357 (1988).

    Google Scholar 

  9. Fukumi, K. et al. Jap. J. appl. Phys. 30, L742–L744 (1991).

    Article  CAS  Google Scholar 

  10. Fukumi, K. et al. J. appl. Phys. 75, 3075–3080 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Kadono, K. et al. Mater. Res. Soc. Symp. Proc. 283, 903–908 (1993).

    Article  CAS  Google Scholar 

  12. Magruder, R. H. et al. Appl. Phys. Lett. 62, 1730–1732 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Akai, T. et al. J. Ceram. Soc. Jap. 101, 105–107 (1993).

    Article  CAS  Google Scholar 

  14. Magruder, R. H., Haglund, R. F. Jr, Yang, L., Wittig, J. E. & Zuhr, R. A. J. appl. Phys. 76, 708–715 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Gibbs, H. M. et al. Appl. Phys. Lett. 41, 221–222 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Glass, A. M. Opt. Engng 17, 470–479 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Günter, P. Phys. Rep. 93, 199–299 (1982).

    Article  ADS  Google Scholar 

  18. Valley, G. C. & Klein, M. B. Opt. Engng 22, 704–711 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Sauteret, C. et al. Phys. Rev. Lett. 36, 956–959 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Matsumoto, S., Kubodera, K., Kurihara, T. & Kaino, T. Appl. Phys. Lett. 51, 1–2 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Jenekhe, S. A., Chen, W., Lo, S. & Flom, S. R. Appl. Phys. Lett. 57, 126–128 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Hashimoto, T., Yoko, T. & Sakka, S. J. Ceram. Soc. Jap. 101, 64–68 (1993).

    Article  CAS  Google Scholar 

  23. Ando, M., Kobayashi, T. & Haruta, M. J. chem. Soc., Faraday Trans. 90, 1011–1013 (1994).

    Article  CAS  Google Scholar 

  24. Kobayashi, T., Terasake, A., Hattori, T. & Kurokawa, K. Appl. Phys. B47, 107–125 (1988).

    Article  Google Scholar 

  25. Yuen, S. Y. & Becla, P. Opt. Lett. 8, 356–358 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Wherrett, B. S. & Higgins, N. A. Proc. R. Soc. A379, 67–90 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Miller, D. A. B., Seaton, C. T., Prise, M. E. & Smith, S. D. Phys. Rev. Lett. 47, 197–200 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Strait, J. & Glass, A. M. J. opt. Soc. Am B3, 342–344 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Bylsma, R. B., Bridenbaugh, P. M., Olson, D. H. & Glass, A. M. Appl. Phys. Lett. 51, 889–891 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, M., Kadono, K., Haruta, M. et al. Large third-order optical nonlinearities in transition-metal oxides. Nature 374, 625–627 (1995). https://doi.org/10.1038/374625a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374625a0

  • Springer Nature Limited

This article is cited by

Navigation