Skip to main content
Log in

Continental rifting and initial sea-floor spreading in the Woodlark basin

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

OUR understanding of the processes by which continents rift and sea-floor spreading initiates is derived primarily from studies either of old passive margins and oceanic crust or of young regions of intra-continental extension where spreading has not yet started. It has been thought that continental rifting ceases when sea-floor spreading begins1,2, that oceanic fracture zones develop from transfer or transform faults within continental rifts3,4, and that linear magnetic anomalies correlate with the onset of sea-floor spreading during times of magnetic reversals5,6. Here we present a marine geophysical survey of one of the few active examples of continental rifting and spreading initiation, the western Woodlark basin/ Papuan peninsula region of New Guinea, which shows that in detail these assumptions do not hold. The data confirm models of the rifting to spreading transition that invoke both ridge propagation and nucleation of discrete spreading cells7,10, and provide an unambiguous example of a spreading centre reorienting by synchronous jumping rather than propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolin, B. in The Greenhouse Effect, Climate Change, and Ecosystems (eds Bolin, B., Duos, B. R., Jeger, J. & Warrick, R. A.) 93–255 (SCOPE Rep. No. 29, Wiley, Chichester, 1986).

    Google Scholar 

  2. Gorham, E. Ecol. Applic. 2, 182–195 (1991).

    Article  Google Scholar 

  3. Clymo, R. S. Phil. Trans. R. Soc. B303, 605–654 (1984).

    Article  Google Scholar 

  4. Clymo, R. S. in Quaternary Landscapes (eds Cushing, E. J. & Shane, L. C.) 77–112 (Univ. Minnesota Press, Minneapolis, 1991).

    Google Scholar 

  5. Romanowicz, E. A., Siegel, D. I. & Glaser, P. H. Geology 21, 231–234 (1993).

    Article  ADS  Google Scholar 

  6. Post, W. M. Rep. No. ORNL/TM-11457 (Oak Ridge National Lab., Oak Ridge, Tennessee, 1990).

  7. Zehnder, A. J. B. Biology of Anaerobic Microorganisms (Wiley-Liss, New York, 1988).

    Google Scholar 

  8. Brock, T. D. & Madigan, M. T. Biology of Microorganisms (Prentice-Hall, Englewood Cliffs, 1991).

    Google Scholar 

  9. Aber, J. D. & Melillo, J. M. Terrestrial Ecosystems (Saunders Collage, Philadelphia, 1991).

    Google Scholar 

  10. Ingram, H. A. P., Rycroft, D. W. & Williams, D. J. A. J. Hydrol. 22, 213–218 (1974).

    Article  ADS  Google Scholar 

  11. Rycroft, D. W., Williams; D. J. A. & Ingram, H. A. P. J. Ecol. 63, 535–568 (1975).

    Article  Google Scholar 

  12. Boelter, D. H. & Verry, E. S. Gen. Tech. Rep. NC-31 (US Dept Agriculture Forest Serv., Washington DC, 1977).

  13. Ingram, H. A. P. Nature 297, 300–303 (1982).

    Article  ADS  Google Scholar 

  14. Ingram, H. A. P. in Mires: Swamp, Bog, Fen and Moore: General Studies 4A (ed. Gore, A. J. P.) 67–158 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  15. Ivanov, K. E. Water Movement in Mires (Academic, London, 1991).

    Google Scholar 

  16. Chason, D. B. & Siegel, D. I. Soil Sci. 142, 91–99 (1986).

    Article  ADS  Google Scholar 

  17. Bear, J. Dynamics of Fluids in Porous Media (Elsevier, New York, 1972).

    MATH  Google Scholar 

  18. Domenico, P. & Schwartz, F. Physical and Chemical Hydrogeology (Wiley, New York, 1990).

    Google Scholar 

  19. Siegel, D. I. Water Res. Inv. No. 81-24 (US Geol. Surv., Washington DC, 1981).

  20. Siegel, D. I. J. Ecol. 71, 913–921 (1983).

    Article  Google Scholar 

  21. Siegel, D. I. & Glaser, P. H. J. Ecol. 75, 743–754 (1987).

    Article  Google Scholar 

  22. Siegel, D. I. in Patterned Peatlands of Northern Minnesota (eds Wright, H. E. Jr & Coffin, B. A.) 163–173 (Univ. Minnesota Press, Minneapolis, 1992).

    Google Scholar 

  23. Almendinger, J. C., Almendinger, J. E. & Glaser, P. H. J. Ecol. 74, 393–401 (1986).

    Article  Google Scholar 

  24. Glaser, P. H., Janssens, J. A. & Siegel, D. I. J. Ecol. 78, 1021–1048 (1990).

    Article  Google Scholar 

  25. Bennett, P., Siegel, D. I., Hill, B. & Glaser, P. H. Geology 19, 328–331 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Hill, B. M. & Siegel, D. I. J. Hydrol. 123, 211–224 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Boldt, D. R. thesis, Syracuse Univ. (1983).

  28. Wang, H. F. & Anderson, M. P. Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods (Freeman, San Francisco, 1982).

    Google Scholar 

  29. Huyakorn, P. & Pinder, G. F. Computational Methods in Subsurface Flow (Academic, New York, 1983).

    MATH  Google Scholar 

  30. Ours, D. P. thesis, Syracuse Univ. (1993).

  31. Arevina, R. et al. Radiocarbon 35, 271–276, (1993).

    Article  Google Scholar 

  32. Chanton, J. P. et al. (abstr.) Eos 74, 151 (1993).

    Article  Google Scholar 

  33. Charman, D. J., Arevena, R. & Warner, B. G. J. Ecol. 82, 55–62 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, B., Goodliffe, A., Martinez, F. et al. Continental rifting and initial sea-floor spreading in the Woodlark basin. Nature 374, 534–537 (1995). https://doi.org/10.1038/374534a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374534a0

  • Springer Nature Limited

This article is cited by

Navigation