Skip to main content
Log in

Detecting intergalactic magnetic fields using time delays in pulses of γ-rays

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

INTERGALACTIC magnetic fields (IGMFs) can be produced by a number of mechanisms, but are expected to be weak and have not so far been detected. 'Primordial' magnetic fields might have been produced in the very early Universe, either by quantum fluctuations during the 'inflationary' period1,2 or through the decoupling transitions of the fundamental forces3,4. The much later ejection of magnetized plasma into intergalactic space from galaxies and active galactic nuclei should also produce IGMFs, though it is possible that some fraction of the Universe retains its 'primordial' field5. Previous studies6 have placed an upper limit of 10 -9 gauss on the strength of an IGMF (with a coherence length of 1 Mpc), but the strength may be much less than this, posing a formidable challenge to current observational capabilities. Here I propose a highly sensitive method for probing weak IGMFs by exploiting their effect on the arrival times of γ-rays from extragalactic sources. The delay in arrival owing to the action of intergalactic magnetic fields on electron cascades caused by scattering of the γ-ray photons might be used to measure fields as weak as 10 -24 gauss. I suggest that this effect may already have been seen in the arrival times of high-energy photons after the main burst of a γ-ray burster7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratra, B. Astrophys. J. 391, L1–L4 (1992).

    Article  ADS  Google Scholar 

  2. Turner, M. S. & Widrow, L. M. Phys. Rev. D37, 2743–2754 (1988).

    ADS  CAS  Google Scholar 

  3. Cheng, B. & Olinto, A. V. Phys. Rev. D50, 2421–2424 (1994).

    ADS  CAS  Google Scholar 

  4. Vachaspaty, T. Phys. Lett. B265, 258–261 (1991).

    Article  Google Scholar 

  5. Thomson, R. C. & Nelson, A. H. Mon. Not. R. astr. Soc. 201, 365–383 (1982).

    Article  ADS  Google Scholar 

  6. Kronberg, P. P. Rep. Prog. Phys. 57, 325–382 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Hurley, K. et al. Nature 372, 652–654 (1994).

    Article  ADS  CAS  Google Scholar 

  8. De Jager, O. C., Stecker, F. W. & Salamon, M. H. Nature 369, 294–296 (1994).

    Article  ADS  Google Scholar 

  9. Protheroe, R. J. & Stanev, T. in Proc. Palaiseau Workshop ‘Towards a Major Atmospheric Čerenkov Detector’ (eds Fleury, P. & Vacanti, G.) 103–114 (Editions Frontieres, Gif-sur-Yvette, 1992).

    Google Scholar 

  10. Zdiarski, A. J. Astrophy. J. 335, 786–802 (1988).

    Article  ADS  Google Scholar 

  11. Kniffen, D. A. et al. Astrophys. J. 411, L133–L136 (1993).

    Article  Google Scholar 

  12. Kouveliotou, C. et al. Astrophys. J. 413, L101–L104 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Mohanty, G. et al. in Proc. 23rd Cosmic Ray. Conf. Vol. 1 (ed. Leahy, D. A.) 440–443 (Univ. Calgary Press, Calgary, 1993).

    Google Scholar 

  14. Paczyński, B. Comm. Astrophys. 16, 241–243 (1992).

    ADS  Google Scholar 

  15. Sommer, M. et al. Astrophys. J. 422, L63–L66 (1994).

    Article  ADS  Google Scholar 

  16. Longair, M. S. High Energy Astrophysics Vol. 1 88–130 (Cambridge Univ. Press, 1992).

    Google Scholar 

  17. Paczyński, B. Astrophys. J. 308, L43–L46 (1986).

    Article  ADS  Google Scholar 

  18. Pare, E. in Proc Calgary Workshop ‘Towards a Major Atmosphere Čerenkov Detector II’ (ed. Lamb, R. C.) 250–259 (Iowa State Univ., Calgary, 1993).

    Google Scholar 

  19. Aharonian, F. A., Coppi, P. S. & Völk, H. J. Astrophys. J. 423, L5–L8 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaga, R. Detecting intergalactic magnetic fields using time delays in pulses of γ-rays. Nature 374, 430–432 (1995). https://doi.org/10.1038/374430a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374430a0

  • Springer Nature Limited

This article is cited by

Navigation