Skip to main content
Log in

Nucleosynthesis of 11B-rich boron in the pre-solar cloud recorded in meteoritic chondrules

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MODELS of the chemical evolution of the Galaxy, in which most elements are created inside stars and distributed by stellar winds and supernovae, cannot produce the observed abundances of boron and beryllium1. These elements have been produced continuously since the Big Bang by collisions between Galactic cosmic rays (very energetic protons and a-particles) and heavier elements, such as carbon and oxygen, in the interstellar medium2–6. But models of chemical evolution that include these effects predict a boron isotope ratio (11B/10B = 2.5, ref. 2) that is very different from that observed on Earth and in meteorites (11B/10B≈4.0, refs 7–9). Here we present ion-probe measurements of the 11B/10B ratio in meteoritic chondrules, which reveal significant variations (3.84–4.25) correlated with the beryllium and boron concentrations. These correlations can be explained by production of 11B-rich boron in the pre-solar cloud, resulting from collisions between interstellar hydrogen (and helium) and low-energy cosmic rays10 such as the carbon and oxygen nuclei recently observed in the Orion star-forming complex11. Our results also suggest that isotopic heterogeneities have been partially preserved during the process of chondrule formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reeves, H. Origin and Evolution of the Elements (eds Prantzos, N., Vangioni-Flam, E. & Cassé, M.) 169–197 (Cambridge Univ. Press 1993).

    Google Scholar 

  2. Meneguzzi, M., Audouze, J. & Reeves, H. Astr. Astrophys. 15, 337–359 (1971).

    ADS  CAS  Google Scholar 

  3. Mitler, H. E. Astrophys. Space Sci. 17, 186–218 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Reeves, H. A. Rev. Astr. Astrophys. 12, 437–469 (1974).

    Article  ADS  Google Scholar 

  5. Prantzos, N., Cassé, M. & Vangioni-Flam, E. Origin and Evolution of the Elements (eds Prantzos, N., Vangioni Flam, E. & Cassé, M.) 156–167 (Cambridge Univ. Press, 1993).

    Google Scholar 

  6. Olive, K. A. & Schramm, D. N. Nature 360, 439–442 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Shima, M. Geochim. cosmochim. Acta 27, 991–913 (1963).

    Article  Google Scholar 

  8. Agyei, E. K. & McMullen, C. C. U.S. Geol. Surv. Open-File Rep. 78–701, 3–6 (1978).

    Google Scholar 

  9. Chaussidon, M. & Jambon, A. Earth planet. Sci. Lett. 121, 277–291 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Cassé, M., Lehoucq, R. & Vangioni-Flam, E. Nature 373, 318–319 (1995).

    Article  ADS  Google Scholar 

  11. Bloemen, H. et al. Astr. Astrophys. 281, L5–L8 (1994).

    ADS  CAS  Google Scholar 

  12. Anders, E. & Grevesse, N. Geochim. cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Lee, T., Papanastassiou, D. A. & Wasserburg, G. J. Astrophys. J. 211, L107–L110 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Podosek, F. A. et al. Geochim. cosmochim. Acta 55, 1083–1110 (1991).

    Article  ADS  CAS  Google Scholar 

  15. McNaughton, N. J., Borthwicks, S., Fallick, A. K. & Pillinger, C. T. Nature 294, 639–641 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Deloule, E. & Robert, F. Geochim. cosmochim. Acta (in the press).

  17. Ash, R. Nature 372, 219–220 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Alexander, C. M. O., Barber, D. J. & Hutchison, R. Geochim. cosmochim. Acta 53, 3045–3057 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Hewins, R. H. Geochim. cosmochim. Acta 55, 935–942 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Chaussidon, M. & Libourel, G. Geochim. cosmochim. Acta 57, 5053–5062 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Shaw, D. M., Higgins, M. D., Truscott, M. G. & Middleton, T. A. Am. Mineral. 73, 894–900 (1988).

    CAS  Google Scholar 

  22. Weller, M. R., Furst, M., Tombrello, T. A. & Burnett, D. S. Geochim. cosmochim. Acta 42, 999–1009 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Curtis, G., Gladney, E. & Jurney, E. Geochim. cosmochim. Acta 44, 1945–1953 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Shaw, D. M., Higgins, M. D., Hinton, R. W., Truscott, M. G. & Middleton, T. A. Geochim. cosmochim. Acta 52, 2311–2319 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Higgins, M. D. & Shaw, D. M. Nature 308, 172–173 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Curtis, D. B. & Gladney, E. S. Earth planet. Sci. Lett. 75, 311–320 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Davis, A. M., Hashimoto, A., Clayton, R. N. & Mayeda, T. K. Nature 347, 655–658 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Chaussidon, M. & Koeberl, C. Geochim. cosmochim. Acta 59, 613–624 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Kanzaki, T., Yoshida, M., Nomura, M., Kakihana, H. & Ozawa, T. Geochim. cosmochim. Acta 43, 1859–1863 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Nomura, M., Kanzaki, M., Ozawa, T., Okamoto, M. & Kakihana, H. Geochim. cosmochim. Acta 46, 2403–2406 (1982).

    Article  ADS  CAS  Google Scholar 

  31. Bykov, A. & Bloemen, H. Astr. Astrophys. 283, L1–L4 (1994).

    ADS  CAS  Google Scholar 

  32. Clayton, D. D. Nature 368, 222–224 (1994).

    Article  ADS  CAS  Google Scholar 

  33. Gibner, P. S., Mewaldt, R. A., Schindler, S. M., Stone, E. C. & Webber, W. R. Astrophys. J. 391, L89–L92 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaussidon, M., Robert, F. Nucleosynthesis of 11B-rich boron in the pre-solar cloud recorded in meteoritic chondrules. Nature 374, 337–339 (1995). https://doi.org/10.1038/374337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374337a0

  • Springer Nature Limited

This article is cited by

Navigation