Skip to main content
Log in

Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

NICOTINE affects many aspects of behaviour including learning and memory1,2 through its interaction with neuronal nicotinic acetylcholine receptors (nAChR). Functional nAChRs are pentameric proteins containing at least one type of a-subunit and one type of p-subunit3–5. The involvement of a particular neuronal nicotinic subunit in pharmacology and behaviour was examined using gene targeting to mutate β2, the most widely expressed nAChR subunit in the central nervous system6–8. We report here that high-affinity binding sites for nicotine are absent from the brains of mice homozygous for the β2-subunit mutation. Further, electrophysiological recording from brain slices reveals that thalamic neurons from these mice do not respond to nicotine application. Finally, behav- ioural tests demonstrate that nicotine no longer augments the performance of β2-/-mice on passive avoidance, a test of associative memory. Paradoxically, mutant mice are able to perform better than their non-mutant siblings on this task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flicker, C., Dean, R. L., Watkins, D. L., Fisher, S. K. & Bartus, R. T. Pharmac. Biochem. Behav. 18, 973–981 (1983).

    Article  CAS  Google Scholar 

  2. Levin, E. D. Psycbopharmacology 108, 417–431 (1992).

    Article  CAS  Google Scholar 

  3. Sargent, P. B. A. Rev. Neurosci. 16, 403–443 (1993).

    Article  CAS  Google Scholar 

  4. Galzi, J.-L., Revah, F., Bessis, A. & Changeux, J.-P. A. Rev. Pharm. 31, 37–72 (1991).

    Article  CAS  Google Scholar 

  5. Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P. & Lindstrom, J. J. biol. Chem. 266, 11192–11198 (1991).

    CAS  PubMed  Google Scholar 

  6. Wada, E. et al. J. comp. Neurol. 284, 314–335 (1989).

    Article  CAS  Google Scholar 

  7. Hill, J. A. J., Zoli, M., Bourgeois, J.-P. & Changeux, J.-P. J. Neurosci. 13, 1551–1568 (1993).

    Article  CAS  Google Scholar 

  8. Zoli, M., Le Novère, N., Hill, J. A. J. & Changeux, J.-P. J. Neurosci. (in the press).

  9. Swanson, L. W. et al. Proc. natn. Acad Sci. U.S.A. 80, 4532–4536 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Flores, C. M., Rogers, S. W., Pabreza, L. A., Wolfe, B. B. & Kellar, K. J. Molec. Pharm. 41, 31–37 (1992).

    CAS  Google Scholar 

  11. Luetje, C. W. & Patrick, J. J. Neurosci. 11, 837–845 (1991).

    Article  CAS  Google Scholar 

  12. Romano, C. & Goldstein, A. Science 210, 647–650 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Marks, M. J. & Collins, A. C. Molec. Pharm. 22, 554–564 (1982).

    CAS  PubMed  Google Scholar 

  14. Marks, M. J. et al. J. Neurosci. 12, 2765–2784 (1982).

    Article  Google Scholar 

  15. Decker, M. W. et al. J. pharmacol. exp. Ther. 270, 319–328 (1994).

    CAS  PubMed  Google Scholar 

  16. Morris, R. G. M. J. Neurosci. 9, 3040–3057 (1989).

    Article  CAS  Google Scholar 

  17. Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Science 257, 206–211 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Faiman, C. P., de Erausquin, G. A. & Baratti, C. M. Behavl Neural Biol. 56, 183–199 (1991).

    Article  CAS  Google Scholar 

  19. Nordberg, A. & Bergh, C. Acta Pharm. Toxicol. 56, 337–341 (1985).

    Article  CAS  Google Scholar 

  20. Merio Pich, E. & Samanin, R. Pharm. Res. 21, 595–602 (1989).

    Article  Google Scholar 

  21. Crawley, J. N. Neurosci. biobehav. Rev. 9, 37–44 (1985).

    Article  CAS  Google Scholar 

  22. Oliverio, A. J. pharmacol. exp. Ther. 154, 350–356 (1966).

    CAS  PubMed  Google Scholar 

  23. Le Mouellic, H., Lallemand, Y. & Brulet, P. Cell 69, 251–264 (1992).

    Article  CAS  Google Scholar 

  24. Yagi, T. et al. Proc. natn. Acad. Sci. U.S.A. 87, 9918–9922 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Magin, T. M., McWhir, J. & Melton, D. W. Nucleic Acids Res. 20, 3795–3796 (1992).

    Article  CAS  Google Scholar 

  26. Selfridge, J., Pow, A. M., McWhir, J., Magin, T. M. & Melton, D. W. Somat. Cell molec. Genet. 18, 325–336 (1992).

    Article  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning; A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  28. Clarke, P., Shwartz, R. D., Paul, S. M., Pert, C. B. & Pert, A. J. Neurosci. 5, 1307–1313 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picciotto, M., Zoli, M., Léna, C. et al. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374, 65–67 (1995). https://doi.org/10.1038/374065a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374065a0

  • Springer Nature Limited

This article is cited by

Navigation