Skip to main content
Log in

A 'smart' catalyst that self-assembles under turnover conditions

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

VIRTUALLY all synthetic materials with a dynamic function, from catalysts to integrated circuit elements, degrade irreversibly with time. The inevitability of decay is an implicit consideration in the design of materials or molecules that serve these functions, and fabrication methods tend to aim simply at minimizing the rate of decay. Here, by contrast, we describe a molecular catalyst that experiences a thermodynamic and kinetic driving force for its own reassembly and repair under the conditions of catalysis. We show that the multicomponent polyanion cluster α-[(CoII)PW11O39]5− self-assembles from four precursor species, containing a total of 28 molecules, and that as it assembles it starts simultaneously to catalyse the epoxidation of alkenes with high selectivity. This conclusion follows from the observation that the kinetics of self-assembly and those of catalysis are closely correlated as the reactions proceed. Should it be fragmented during operation, this polyanion catalyst will therefore experience a thermodynamic and kinetic driving force for its own repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wintner, E. A., Morgan Conn, M. & Rebek, J. Jr Accts chem. Res. 27, 198–203 (1994).

    Article  CAS  Google Scholar 

  2. Tjivikua, T., Ballester, P. & Rebek, J. Jr J. Am. chem. Soc. 112, 1249–1250 (1990).

    Article  CAS  Google Scholar 

  3. Grate, J. H., Hamm, D. R. & Mahajan, S. Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (eds Pope, M. T. & Müller, A.) 281–305 (Kluwer, Dordrecht, 1993).

    Google Scholar 

  4. Selling, A. et al. Inorg. Chem. 33, 3141–3150 (1994).

    Article  CAS  Google Scholar 

  5. Pope, M. T. Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).

    Book  Google Scholar 

  6. Pope, M. T. & Müller, A. Angew. Chem. int. Edn engl. 30, 34–48 (1991).

    Article  Google Scholar 

  7. Day, V. W. & Klemperer, W. G. Science 228, 533–541 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Misono, M. & Nojiri, N. Appl. Catal. 64, 1–30 (1990).

    Article  CAS  Google Scholar 

  9. Sheldon, A. & Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds Ch. 3 (Academic, New York, 1981).

    Google Scholar 

  10. Woodward, S. S., Finn, M. G. & Sharpless, K. B. J. Am. chem. Soc. 113, 106–113 (1991).

    Article  Google Scholar 

  11. Finn, M. G. & Sharpless, K. B. J. Am. chem. Soc. 113, 113–126 (1991).

    Article  CAS  Google Scholar 

  12. Parshall, G. W. & Ittel, S. D. Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes 151–261 (Wiley-lnterscience, New York, 1992).

    Google Scholar 

  13. Sheldon, R. A. ChemTech 21, 566–576 (1991).

    CAS  Google Scholar 

  14. Jørgensen, K. A. Chem. Rev. 89, 431–458 (1989).

    Article  Google Scholar 

  15. Jørgensen, K. A. & Schiøtt, B. Chem. Rev. 90, 1483–1506 (1990).

    Article  Google Scholar 

  16. Drago, R. S. Coord. Chem. Rev. 117, 185–213 (1992).

    Article  CAS  Google Scholar 

  17. Hill, C. L., Khenkin, A. M., Weeks, M. S. & Hou, Y. in ACS Symposium Series on Catalytic Selective Oxidation (eds Oyama, S. T. & Hightower, J. W.) Ch. 6 (Am. Chem. Soc, Washington DC, 1993).

    Google Scholar 

  18. Meunier, B. Chem. Rev. 92, 1411–1456 (1992).

    Article  CAS  Google Scholar 

  19. Taylor, T. G., Hill, K. W., Fann, W.-P., Tsuchiya, S. & Dunlap, B. E. J. Am. chem. Soc. 114, 1308–1312 (1992).

    Article  Google Scholar 

  20. Bruice, T. C. & He, G. J. Am. chem. Soc. 113, 2747–2753 (1991).

    Article  Google Scholar 

  21. Grinstaff, M. W., Hill, M. G., Labinger, J. A. & Gray, H. B. Science 264, 1311–1313 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Hill, C. L. & Brown, R. B. Jr J. Am. chem. Soc. 108, 536–539 (1986).

    Article  CAS  Google Scholar 

  23. Katsoulis, D. E. & Pope, M. T. J. chem. Soc., Dalton Trans. 1483–1489 (1989).

  24. Neumann, R. & Abu-Gnim, C. J. J. Am. chem. Soc. 112, 6025–6031 (1990).

    Article  CAS  Google Scholar 

  25. Fedotov, M. A. et al. Catal. Lett. 6, 417 (1990).

    Article  CAS  Google Scholar 

  26. Mansuy, D., Bartoli, J.-F., Battioni, P., Lyon, D. K. & Finke, R. G. J. Am. chem. Soc. 113, 7222–7226 (1991).

    Article  CAS  Google Scholar 

  27. Rong, C. & Pope, M. T. J. Am. chem. Soc. 114, 2932–2938 (1992).

    Article  CAS  Google Scholar 

  28. Lyons, J. E., Ellis, P. E. Jr & Durante, V. A. in Stud. Surf. Sci. Catal. (eds Grasselli, R. A. & Sleight, A. W.) 99–116 (Elsevier Scientific, Amsterdam, 1991).

    Google Scholar 

  29. Khenkin, A. M. & Hill, C. L. J. Am. chem. Soc. 115, 8178–8186 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, C., Zhang, X. A 'smart' catalyst that self-assembles under turnover conditions. Nature 373, 324–326 (1995). https://doi.org/10.1038/373324a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373324a0

  • Springer Nature Limited

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Navigation