Skip to main content
Log in

Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SEVERAL attempts have been made to fill carbon nanotubes1 with metals or metallic compounds to obtain nanocomposite materials with potentially interesting properties. Capillary action, predicted2 to be a filling mechanism, has been used3'4 to encapsulate lead and bismuth in open tubes. Compounds of yttrium5, manganese6 and gadolinium7 have also been encapsulated by formation of the nano-tubes in an arc discharge with the metals present in situ. Very recently, Tsang et al.8 showed that oxides of nickel, cobalt, iron and uranium can be encapsulated by opening the tubes and deposit-ing the filling material using wet chemical techniques. Here we report a search for general principles relating to the nature and structure of the filling material, using the arc-discharge method to fill tubes with fifteen metals and/or their compounds: Ti, Cr, Fe, Co, Ni, Cu, Zn, Mo, Pd, Sn, Ta, W, Gd, Dy and Yb. We find that the propensity for forming continuous 'nanowires' throughout the length of the tubes seems to be strongly correlated with the existence of an incomplete electronic shell in the most stable ionic state of the metal. We also find that the interplay between growth of the nanotube and growth of the filling results, in one case, in the formation of an unusual helical filling morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Pederson, M. R. & Broughton, J. Q. Phys. Rev. Lett. 69, 2689–2692 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Ajayan, P. M. & Iijima, S. Nature 361, 333–334 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Ajayan, P. M. et al. Nature 362, 522–525 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Seraphin, S., Zhou, D., Jiao, J., Withers, J. C. & Loutfy, R. Nature 362, 503 (1993).

    Article  ADS  Google Scholar 

  6. Ajayan P. M. et al. Phys. Rev. Lett. 72, 1722–1725 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Subramoney, S. et al. Carbon 32, 507–513 (1994).

    Article  CAS  Google Scholar 

  8. Tsang, S. C., Chen, Y. K., Harris, P. J. F. & Green, M. L. H. Nature 372, 159–162 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Seraphin, S., Zhou, D., Jiao, J., Withers, J. C. & Loutfy, R. Appl. Phys. Lett. 63, 2073–2075 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Audier, M., Oberlin, A. & Coulon, M. J. Cryst. Growth 55, 549–556 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Baker, R. T. & Harris, P. S. in Chemistry and Physics of Carbon Vol. 14 (ed. Thrower, P. A.) 83–165 (Dekker, New York, 1978).

    Google Scholar 

  12. Audier, M. & Coulon, M. Carbon 23, 317–323 (1985).

    Article  CAS  Google Scholar 

  13. Saito, Y. & Yoshikawa, T. J. Cryst. Growth 134, 154–156 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Cowley, J. M. & Liu, M. Micron 25, 53–61 (1994).

    Article  CAS  Google Scholar 

  15. Ruoff, R. S., Lorents, D. C., Chan, B. C., Malhotra, R. & Subramoney, S. Science 259, 346–347 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Murakami, Y. et al. J. Phys. Chem. Solids 54, 1861–1870 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerret-Piécourt, C., Bouar, Y., Lolseau, A. et al. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 372, 761–765 (1994). https://doi.org/10.1038/372761a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372761a0

  • Springer Nature Limited

This article is cited by

Navigation