Skip to main content
Log in

A deep earthquake aftershock sequence and implications for the rupture mechanism of deep earthquakes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

A Correction to this article was published on 15 December 1994

Abstract

A distinguishing characteristic of deep earthquakes has been the absence of observable aftershock sequences1,2. Here we report the first extensive deep-earthquake aftershock sequence to be observed; it was recorded by an array of eight broadband seismographs following the 9 March 1994 deep Tonga earthquake. The aftershocks show a power-law decay with time following the main shock, as is typical of shallow events. Most of the well located aftershocks are concentrated along a steeply dipping plane consistent with one of the nodal planes of the main-shock mechanism and the mechanisms of three large aftershocks. Assuming these aftershocks denote the main-shock rupture area, they define a 50 × 65 km fault plane extending across the entire width of the active seismic zone and into the surrounding aseismic region. The width of the aftershock zone is wider than the expected width of the metastable olivine wedge, demonstrating that either the width of the metastable olivine material exceeds previous estimates, or the aftershocks are not confined in such a wedge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leith, A. & Sharpe, J. A. J. Geol. 44, 877–917 (1936).

    Article  ADS  Google Scholar 

  2. Frohlich, C. A. Rev. Earth planet. Sci. 17, 227–254 (1989).

    Article  ADS  Google Scholar 

  3. Pavlis, G. L. & Hamburger, M. W. J. geophys. Res. 96, 18107–18117 (1991).

    Article  ADS  Google Scholar 

  4. Kisslinger, C. & Hasegawa, A. Tectonophysics 197, 27–40 (1991).

    Article  ADS  Google Scholar 

  5. Green, H. W. & Burnley, P. C. Nature 341, 733–737 (1989).

    Article  ADS  Google Scholar 

  6. Kirby, S. H., Durham, W. B. & Stern, L. A. Science 252, 216–225 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Willemann, R. J. & Frohlich, C. J. geophys. Res. 92, 13927–13943 (1987).

    Article  ADS  Google Scholar 

  8. Myers, S. C. et al. Geophys. Res. Lett., (in the press).

  9. Omori, F. J. Coll. Sci. Imp. Univ. Tokyo 7, 111–200 (1895).

    Google Scholar 

  10. Kisslinger, C. & Jones, L. M. J. geophys. Res. 96, 11947–11958 (1991).

    Google Scholar 

  11. Davis, S. D. & Frohlich, C. J. Geophys. Res. 96, 6335–6350 (1991).

    Article  ADS  Google Scholar 

  12. Utsu, T. Geophys. Mag. 30, 521–605 (1961).

    Google Scholar 

  13. Ogata, Y. J. Phys. Earth 31, 115–124 (1983).

    Article  Google Scholar 

  14. Jordan, T. H. & Sverdrup, K. A. Bull. seism. Soc. Am. 71, 1105–1130 (1981).

    Google Scholar 

  15. Wiens, D. A., McGuire, J. J. & Shore, P. J. Nature 364, 790–793 (1993).

    Article  ADS  Google Scholar 

  16. Fuchs, K. & Muller, G. Geophys. J. R. astr. Soc. 23, 417–433 (1971).

    Article  ADS  Google Scholar 

  17. Kennett, B. L. N. Seismic Wave Propagation in Stratified Media (Cambridge Univ. Press, 1983).

    Google Scholar 

  18. McGuire, J. J. et al., (abstr.) EOS 75, 466 (1994).

    Google Scholar 

  19. Wyss, M. & Molnar, P. Phys. Earth planet. Inter. 6, 279–292 (1972).

    Article  ADS  Google Scholar 

  20. Houston, H. & Williams, Q. Nature 352, 520–522 (1991).

    Article  ADS  Google Scholar 

  21. Sung, C. & Burns, R. G. Tectonophysics 31, 1–32 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Iidaka, T. & Suetsugu, D. Nature 356, 593–595 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Rubie, D. C. & Ross, C. R. Phys. Earth planet Inter. (in the press).

  24. Kirby, S. H. J. geophys. Res. 92, 13789–13800 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Green, H. W., Young T. E., Walker, D. & Scholz, C. H. Nature 348, 720–722 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Iidaka, T. & Furukawa, Y. Science 263, 1116–1118 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Stein, S., Kirby, S. H., Rubie, D. & Okal, E. A. paper presented at the SUBCON conference, Avalon, California, 13–17 June 1994.

  28. Toksoz, M. N., Sleep, N. H. & Smith, A. T. Geophys. J. R. astr. Soc. 35, 285–310 (1973).

    Article  Google Scholar 

  29. Abe, K. J. Phys. Earth 30, 321–330 (1982).

    Article  ADS  Google Scholar 

  30. Dziewonski, A. M., Chou, T. & Woodhouse, J. H. J. geophys. Res. 86, 2825–2852 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiens, D., McGuire, J., Shore, P. et al. A deep earthquake aftershock sequence and implications for the rupture mechanism of deep earthquakes. Nature 372, 540–543 (1994). https://doi.org/10.1038/372540a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372540a0

  • Springer Nature Limited

This article is cited by

Navigation