Skip to main content
Log in

An atomistic model for stepped diamond growth

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE growth of many crystalline materials occurs through lateral propagation of steps over the surface1–3. A stepped texture is also characteristic of diamond grown by chemical vapour deposition (CVD)4–10. Diffusion of atoms on the surface is usually held responsible for the stepped growth of metals, but it has been thought11–14 that the stronger bonding of adatoms should prevent this mechanism from operating in the case of diamond. Recent experiments15 have, however, indicated that surface diffusion can take place during diamond growth. We have recently shown theoretically16 that bridging methylene (CH2) groups on the {100} plane of diamond growing in the presence of hydrogen can migrate in a manner equivalent to surface diffusion. Here we show that this theoretical picture can be developed into an atomistic model that accounts for stepped growth of diamond. The stepped pattern can be understood in terms of the formation of surface-bound species from the gaseous precursors, followed by their migration by means of a series of surface chemical reactions involving covalent bond breaking and formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morrison, S. R. The Chemical Physics of Surfaces (Plenum, New York, 1990).

    Book  Google Scholar 

  2. Harris, S. J. Cryst. Growth 97, 319–323 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Kandel, D. & Weeks, J. D. Phys. Rev. Lett. 72, 1678–1681 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Fedosayev, D. V., Deryagin, B. V. & Varasavskaja, I. G. Surf. Coatings Technol. 38, 9–122 (1989).

  5. Hirabayashi, K., Kurihara, N. I., Ohtake, N. & Yoshikawa, M. Jap. J. appl. Phys. 31, 355–360 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Lu, Z. P., Heberlein, J. & Pfender, E. Plasma Chem. Plasma Process. 12, 55–69 (1992).

    Article  CAS  Google Scholar 

  7. Okada, K., Komatsu, S., Ishigaki, T., Matsumoto, S. & Moriyoshi, Y. Appl. Phys. Lett. 60, 959–961 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Ravi, K. V. J. Mater. Res. 7, 384–393 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Sun, B., Zhang, X. & Lin, Z. Phys. Rev. B47, 9816–9824 (1993).

    Article  ADS  CAS  Google Scholar 

  10. van Enckevort, W. J. P. in Synthetic Diamond: Emerging CVD Science and Technology (eds Spear, K. E. & Dismukes, J. P.) 307–353 (Wiley, New York, 1994).

    Google Scholar 

  11. Harris, S. J. & Goodwin, D. G. J. phys. Chem. 97, 23–28 (1993).

    Article  CAS  Google Scholar 

  12. Coltrin, M. E. & Dandy, D. S. J. appl. Phys. 74, 5803–5820 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Zhu, M., Hauge, R. H., Margrave, J. L. & D'Evelyn, M. P. in Proc. 3rd int. Symp. on Diamond Materials (eds Dismukes, J. P. & Ravi, K. V.) 138–145 (Electrochemical Soc., Pennington, New Jersey, 1993).

    Google Scholar 

  14. Alfonso, D. R., Ulloa, S. E. & Brenner, D. W. Phys. Rev. B49, 4948–4953 (1994).

    Article  ADS  CAS  Google Scholar 

  15. van Enckevort, W. J. P. et al. Diamond Related Mater. 2, 997–1003 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Skokov, S., Weiner, B. & Frenklach, M. J. phys. Chem. 98, 7073–7082 (1994).

    Article  CAS  Google Scholar 

  17. Skokov, S., Weiner, B. & Frenklach, M. J. phys. Chem. 98, 8–11 (1994).

    Article  CAS  Google Scholar 

  18. Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    Google Scholar 

  19. Stewart, J. J. P. J. comput. Chem. 10, 209–220 (1989).

    Article  CAS  Google Scholar 

  20. Dewar, M. J. S. Int. J. Quant. Chem. 44, 427–447 (1992).

    Article  CAS  Google Scholar 

  21. Angus, J. C. & Hayman, C. C. Science 241, 913–921 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Specht, E. D., Clausing, R. E. & Heatherly, L. J. Cryst. Growth 114, 38–46 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Garrison, B. J., Dawnkaski, E. J., Srivastava, D. & Brenner, D. W. Science 255, 835–838 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenklach, M., Skokov, S. & Weiner, B. An atomistic model for stepped diamond growth. Nature 372, 535–537 (1994). https://doi.org/10.1038/372535a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372535a0

  • Springer Nature Limited

This article is cited by

Navigation