Skip to main content
Log in

Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN mammalian cells, DNA damage increases the levels of the nuclear tumour-suppressor p53, resulting in elevated synthesis of p21, an inhibitor of cyclin-dependent kinases (CDK)1–6. p21 may also directly block DNA replication by inhibiting the proliferating-cell nuclear antigen (PCNA)7, an essential DNA replication protein. However, PCNA is also required for nucleotide-excision repair of DNA8, an intrinsic part of the cellular response to ultraviolet irradiation. Using an in vitro system9, we now show that p21 does not block PCNA-dependent nucleotide-excision repair, in contrast to its inhibition of simian virus 40 DNA replication7. Furthermore, the short gap-filling DNA synthesis by PCNA-dependent DNA polymerases δ and ɛ is less sensitive to inhibition by p21 than is long primer-extension synthesis. The ability of p21 to inhibit the role of PCNA in DNA replication but not in DNA repair rationalizes in vivo data showing that genetic damage leads to inactivation of chromosomal replication while allowing damage-responsive repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Deiry, W. S. et al. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Gu, Y., Turck, C. W. & Morgan, D. O. Nature 366, 707–710 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Xiong, Y. et al. Nature 366, 701–704 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Xiong, Y., Zhang, H. & Beach, D. Genes Dev. 7, 1572–1583 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Dulic, V. et al. Cell 76, 1013–1023 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Waga, S., Hannon, G. J., Beach, D. & Stillman, B. Nature 369, 574–578 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Shivji, M. K. K., Kenny, M. K. & Wood, R. D. Cell 69, 367–374 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Wood, R. D., Robbins, P. & Lindahl, T. Cell 53, 97–106 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Kastan, M. et al. Cell 71, 587–597 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Friedberg, E. C. DNA Repair (Freeman, San Francisco, 1985).

    Google Scholar 

  12. Lu, X. & Lane, D. P. Cell 75, 765–778 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Melendy, T. & Stillman, B. in Nucleic Acids and Molecular Biology Vol. 6 (eds Eckstein, F. & Lilly, D. M. J.) 129–158 (Springer, Berlin and Heidelberg, 1992).

    Book  Google Scholar 

  14. Coverley, D. et al. Nature 349, 538–541 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Tsurimoto, T. & Stillman, B. J. biol. Chem. 266, 1961–1968 (1991).

    CAS  PubMed  Google Scholar 

  16. Svoboda, D. L., Taylor, J. S., Hearst, J. E. & Sancar, S. J. biol. Chem. 268, 1931–1936 (1993).

    CAS  PubMed  Google Scholar 

  17. Podust, V. N., Georgaki, A., Strack, B. & Hubscher, U. Nucleic Acids Res. 20, 4159–4165 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bravo, R., Frank, R., Blundell, P. A. & MacDonald-Bravo, H. Nature 326, 515–517 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Prelich, G. et al. Nature 326, 517–520 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Lee, S.-H., Zhen-Qiang, P., Kwong, A. D., Burgers, P. M. J. & Hurwitz, J. J. biol. Chem. 266, 22707–22717 (1991).

    CAS  PubMed  Google Scholar 

  21. Nishida, C., Reinhard, P. & Linn, S. J. biol. Chem. 263, 501–510 (1988).

    CAS  PubMed  Google Scholar 

  22. Wang, Z.-G., Wu, X.-H. & Friedberg, E. C. Molec. cell. Biol. 13, 1051–1058 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng, X.-R., Jiang, Y., Zhang, S.-J., Hao, H. & Lee, M. Y. W. T. J. biol. Chem. 269, 13748–13751 (1994).

    CAS  PubMed  Google Scholar 

  24. Hoeijmakers, J. H. J. Trends Genet. 9, 211–217 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Aboussekhra, A. & Wood, R. D. Curr. Opin. Genet. Dev. 4, 212–220 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, L., Li, R., Mohr, I. J., Clark, R. & Botchan, M. R. Nature 353, 628–632 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Waga, S., Bauer, G. & Stillman, B. J. biol. Chem. 269, 10923–10934 (1994).

    CAS  PubMed  Google Scholar 

  28. Prelich, G. & Stillman, B. Cell 53, 117–126 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Weiser, T., Gassmann, M., Thommes, P., Ferrari, E. & Hafkemeyer, P. J. biol. Chem. 266, 10420–10428 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Waga, S., Hannon, G. et al. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371, 534–537 (1994). https://doi.org/10.1038/371534a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371534a0

  • Springer Nature Limited

This article is cited by

Navigation