Skip to main content

Advertisement

Log in

A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ANTHROPOGENIC sulphate aerosols are believed to affect the radiation budget of the Earth in two ways. Through the direct effect they scatter solar radiation back to space, producing a radiative forcing whose global annual mean has been estimated to lie in the range −0.3 to −0.9 W m−2 (refs 1–3). This is significant compared to the longwave forcing due to increases in anthropogenic trace gases since the beginning of the industrial era, estimated at +2 to +2.5 W m−2 (ref. 4). Aerosols also have an indirect effect, altering the distribution and concentration of cloud condensation nuclei (CCN) and hence the number density and size distribution of cloud droplets, thus affecting the solar radiative characteristics of clouds5,6. This is harder to quantify than the direct effect, because it depends on complex and poorly understood interactions between aerosols, CCN and cloud properties. Here we use sulphate aerosol data derived from a three-dimensional chemical transport model7 to estimate the indirect radiative forcing by low-level water clouds using a general circulation model. We estimate that the indirect aerosol effect at the top of the atmosphere is approximately −1.3 W m−2 in the global annual mean. Although this value is subject to a high level of uncertainty, even if the effect is only half as large it would still exceed many estimates of the direct effect, demonstrating its potential importance in climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B. & Warren, S. G. Tellus 43, 152–163 (1991).

    Google Scholar 

  2. Kiehl, J. T. & Briegleb, B. P. Science 260, 311–314 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Taylor, K. E. &. Penner, J. E. Nature 369, 734–737 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. (eds) IPCC Climate Change: The IPCC Scientific Assessment (Cambridge Univ. Press, 1990).

  5. Twomey, S. A. Atmos. Envir. 8, 1251–1256 (1974).

    Article  Google Scholar 

  6. Twomey, S. A., Piepgrass, M. & Wolfe, T. L. Tellus 36B, 356–366 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Langner, J. & Rodne, H. J. atmos. Chem. 13, 225–263 (1991).

    Article  CAS  Google Scholar 

  8. Cullen, M. J. P. Met. Mag. 122, 81–94 (1993).

    Google Scholar 

  9. Smith, R. N. B. Q. JI. R. met. Soc. 116, 435–460 (1990).

    Article  ADS  Google Scholar 

  10. Martin, G. M. & Johnson, D. W. in Proc. 11th int. Conf. Clouds and Precipitation, Montreal 158–161 (AES, Downsview, 1992).

    Google Scholar 

  11. Bower, K. N. & Choularton, T. W. Atmos. Res. 27, 305–339 (1992).

    Article  Google Scholar 

  12. Martin, G. M., Johnson, D. W. & Spice, A. J. atmos. Sci. 51, 1823–1842 (1994).

    Article  ADS  Google Scholar 

  13. Slingo, A. J. atmos. Sci. 46, 1419–1427 (1989).

    Article  ADS  Google Scholar 

  14. d'Almeida, G. A., Koepke, P. & Shettle, E. P. Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, Hampton, Virginia, 1991).

    Google Scholar 

  15. Leaitch, W. R., Isaac, G. A., Strapp, J. W., Banic, C. M. & Wiebe, H. A. J. geophys. Res. 97, 2463–2474 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Nicholls, S. Q. JI. R. Met. Soc. 110, 783–820 (1984).

    Article  ADS  Google Scholar 

  17. Nakajima, T. & King, M. D. J. atmos. Sci. 47, 1878–1893 (1990).

    Article  ADS  Google Scholar 

  18. Han, Q., Rossow, W. B. & Lacis, A. A. J. Clim. 7, 465–497 (1994).

    Article  ADS  Google Scholar 

  19. Taylor, J. P. & McHaffie, A. J. atmos. Sci. 51, 1298–1306 (1994).

    Article  ADS  Google Scholar 

  20. Charlson, R. J. et al. Science 255, 423–430 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Kaufman, Y. J. & Chou, M.-D. J. Clim. 6, 1241–1252 (1993).

    Article  ADS  Google Scholar 

  22. Boucher, O. & Rodhe, H. Department of Meteorology Report CM-83 (Stockholm Univ. 1994).

    Google Scholar 

  23. Albrecht, B. A. Science 245, 1227–1230 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Novakov, T. & Penner, J. E. Nature 365, 823–826 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Hegg, D. A., Ferek, R. J. & Hobbs, P. V. J. geophys. Res. 98, 14887–14894 (1993).

    Article  ADS  Google Scholar 

  26. Platnick, S. & Twomey, S. A. J. of appl. Meteor. 33, 334–347 (1994).

    Article  ADS  Google Scholar 

  27. Wigley, T. M. L. Nature 349, 503–506 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A., Roberts, D. & Slingo, A. A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature 370, 450–453 (1994). https://doi.org/10.1038/370450a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370450a0

  • Springer Nature Limited

Navigation