Skip to main content
Log in

Biological magnetic resonance imaging using laser-polarized 129Xe

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

As currently implemented, magnetic resonance imaging (MRI) relies on the protons of water molecules in tissue to provide the NMR signal. Protons are, however, notoriously difficult to image in some biological environments of interest, notably the lungs1 and lipid bilayer membranes such as those in the brain2. Here we show that 129Xe gas can be used for high-resolution MRI when the nuclear-spin polarization of the atoms is increased by laser optical pumping and spin exchange3–6. This process produces hyperpolarized 129Xe, in which the magnetization is enhanced by a factor of about 105. By introducing hyperpolarized 129Xe into mouse lungs we have obtained images of the lung gas space with a speed and a resolution better than those available from proton MRI1,7 or emission tomography8,9. As xenon (a safe general anaesthetic) is rapidly and safely trans-ferred from the lungs to blood and thence to other tissues8,9, where it is concentrated in lipid10–15 and protein13,15–18 components, images of the circulatory system, the brain and other vital organs can also be obtained. Because the magnetic behaviour of 129Xe is very sensi-tive to its environment, and is different from that of 1H2O, MRI using hyperpolarized 129Xe should involve distinct and sensitive mechanisms for tissue contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergin, C. J., Pauly, J. M. & Macovski, A. Radiology 179, 777–781 (1991).

    Article  CAS  Google Scholar 

  2. Bárány, M. et al. Magn. Reson. Imaging 5, 393–398 (1987).

    Article  Google Scholar 

  3. Bhaskar, N. D., Happer, W. & McClelland, T. Phys. Rev. Lett. 49, 25–28 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Happer, W. et al. Phys. Rev. A29, 3092–3110 (1984).

    Article  CAS  Google Scholar 

  5. Cates, G. D. et al. Phys. Rev. A45, 4631–4639 (1992).

    Article  CAS  Google Scholar 

  6. Raftery, D. et al. Phys. Rev. Lett. 66, 584–587 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Gewalt, S. L. et al. Magn. Reson. Med. 29, 99–106 (1993).

    Article  CAS  Google Scholar 

  8. Susskind, H. et al. Prog. nucl. Med. 5, 144–170 (1978).

    CAS  PubMed  Google Scholar 

  9. Susskind, H., Ellis, K. J., Atkins, H. L., Cohn, S. H. & Richards, P. Prog. nucl. Med. 5, 13–34 (1978).

    CAS  PubMed  Google Scholar 

  10. Pollack, G. L., Himm, J. F. & Enyeart, J. J. J. chem. Phys. 81, 3239–3246 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Wilcock, R. J., Battino, R., Danforth, W. F. & Wilhelm, E. J. chem. Thermodynam. 10, 817–822 (1978).

    Article  CAS  Google Scholar 

  12. Wilhelm, E., Battino, R. & Wilcock, R. J. Chem. Rev. 77, 219–243 (1977).

    Article  CAS  Google Scholar 

  13. Wishnia, A. Biochemistry 8, 5064–5070 (1969).

    Article  CAS  Google Scholar 

  14. Miller, K. W. et al. Proc. natn. Acad. Sci. U.S.A. 78, 4946–4949 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Albert, M. S., Springer, C. S., Murphy, R. & Wishnia, A. Abstr. 11th A. Mtg Soc. magn. Reson. Med. (ed. Wehrli, F. W.) 2104 (SMRM, Berkeley, California, 1992).

    Google Scholar 

  16. Wishnia, A. Biochemistry 8, 5070–5075 (1969).

    Article  CAS  Google Scholar 

  17. Schoenborn B. P. J. molec. Biol. 45, 297–303 (1969).

    Article  CAS  Google Scholar 

  18. Tilton, R. F. Jr & Kuntz, I. D. Jr Biochemistry 21, 6850–6857 (1982).

    Article  CAS  Google Scholar 

  19. Jameson, C. J., Jameson, A. K. & Hwang, J. K. J. chem. Phys. 89, 4074–4081 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Diehl, P. & Jokisaari, J. J. mag. Reson. 88, 660–665 (1990).

    ADS  CAS  Google Scholar 

  21. Albert, M. S., Springer, C. S. & Wishnia, A. Abstr. 11th A. Mtg Soc. magn. Reson. Med. (ed. Wehrli, F. W.) 4710 (SMRM, Berkeley, California, 1992).

    Google Scholar 

  22. Blumgart, H. L. & Weiss, S. J. clin. Invest. 4, 339–411, 423–425 (1927).

    Article  Google Scholar 

  23. Knudsen, G. M., Pettigrew, K. D., Patlak, C. S. & Paulson, O. B. Am. J. Physiol. (in the press).

  24. Fullerton, G. D. & Cameron, I. L. in Biomedical Magnetic Resonance Imaging (eds Wehrli, F. W., Shaw, D. & Kneeland, J. B.) 147 (VCH, New York, 1988).

    Google Scholar 

  25. Ogawa, S. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5951–5955 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Mayo, J. R. et al. Radiology 163, 507–510 (1987).

    Article  CAS  Google Scholar 

  27. Newbury, N. R., Barton, A. S., Cates, G. D., Happer, W. & Middleton, H. Phys. Rev. A48, 4411–4420 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Cates, G. D. et al. Phys. Rev. Lett. 65, 2591–2594 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Gatzke, M. et al. Phys. Rev. Lett. 70, 690–693 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Haase, A., Frahm, J., Matthaei, D., Haenicke, W. & Merboldt, K. D. J. mag. Reson. 67, 258–266 (1986).

    ADS  CAS  Google Scholar 

  31. Albert, M. S., Huang, W., Lee, J.-H., Patlak, C. S. & Springer, C. S. Jr Magn. Reson. Med. 29, 700–714 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, M., Cates, G., Driehuys, B. et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370, 199–201 (1994). https://doi.org/10.1038/370199a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370199a0

  • Springer Nature Limited

This article is cited by

Navigation