Skip to main content

Advertisement

Log in

Seismic evidence for silicate melt atop the 410-km mantle discontinuity

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

LABORATORY results demonstrating that basic to ultrabasic melts become denser than olivine-rich mantle at pressures above 6 GPa (refs 1–3) have important implications for basalt petrogenesis, mantle differentiation and the storage of volatiles deep in the Earth. A density cross-over between melt and solid in the extensively molten Archaean mantle has been inferred from komatiitic volcanism4–6 and major-element mass balances7, but present-day evidence of dense melt below the seismic low-velocity zone is lacking. Here we present mantle shear-wave impedance profiles obtained from multiple-ScS reverberation mapping for corridors connecting western Pacific subduction zone earthquakes with digital seismograph stations in eastern China, imaging a ∼5.8% impedance decrease roughly 330 km beneath the Sea of Japan, Yellow Sea and easternmost Asia. We propose that this represents the upper surface of a layer of negatively buoyant melt lying on top of the olivine→β-phase transition (the 410-km seismic discontinuity). Volatile-rich fluids expelled from the partial melt zone as it freezes may migrate upwards, acting as metasomatic agents8,9 and perhaps as the deep 'proto-souree' of kimberlites10,11. The remaining, dense, crystalline fraction would then concentrate above 410 km, producing a garnet-rich layer that may flush into the transition zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rigden, S., Ahrens, T. J. & Stolper, E. M. Science 226, 1071–1074 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Agee, C. B. & Walker, D. J. geophys. Res. 93, 3437–3449 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Miller, G. H., Stolper, E. M. & Ahrens, T. J. geophys. Res. 96, 11831–11848 (1991).

    Article  ADS  Google Scholar 

  4. Stolper, E., Walker, D., Hager, B. H. & Hays, J. F. J. geophys. Res. 86, 6261–6271 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Ohtani, E. Earth planet. Sci. Lett. 67, 261–272 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Miller, G. H., Stolper, E. M. & Ahrens, T. J. geophys. Res. 96, 11849–11864 (1991).

    Article  ADS  Google Scholar 

  7. Agee, C. B. & Walker, D. Earth planet. Sci. Lett. 90, 144–156 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Jordan, T. H. Phil. Trans. R. Soc. A301, 359–373 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Menzies, M. A. & Hawkesworth, C. J. (eds) Mantle Metasomatism (Academic, London, 1987).

  10. Eggler, D. H. & Wendlandt, R. F. in Kimberlites, Diatremes and Diamonds: Their Geology, Petrology, and Geochemistry (eds Boyd, F. R. & Mayer, H. 0. A.) 330–338 (Am. Geophys. Un., Washington DC, 1979).

    Book  Google Scholar 

  11. Canil, D. & Scarfe, C. M. J. geophys. Res. 95, 15805–15816 (1990).

    Article  ADS  Google Scholar 

  12. Williams, Q. & Jeanloz, R. Science 239, 902–905 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Stixrude, L. & Bukowinski, M. S. T. Science 250, 541–543 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Revenaugh, J. & Jordan, T. H. J. geophys. Res. 94, 5787–5813 (1989).

    Article  ADS  Google Scholar 

  15. Revenaugh, J. & Jordan, T. H. J. geophys. Res. 96, 19749–19762 (1991).

    Article  ADS  Google Scholar 

  16. Revenaugh, J. & Jordan, T. H. J. geophys. Res. 96, 19763–19780 (1991).

    Article  ADS  Google Scholar 

  17. Revenaugh, J. & Jordan, T. H. J. geophys. Res. 96, 19781–19810 (1991).

    Article  ADS  Google Scholar 

  18. Gasparik, T. Contr. Miner. Petrol. 102, 389–404 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Sipkin, S. A. & Revenaugh, J. J. geophys. Res. (in the press).

  20. Anderson, D. L. Theory of the Earth (Blackwell Scientific, Boston, Massachusetts, 1989).

    Google Scholar 

  21. van der Hilst, R. D., Engdahl, E. R. & Spakman, W. Geophys. J. Int. 115, 264–302 (1993).

    Article  ADS  Google Scholar 

  22. Dziewonski, A. M., Hales, A. L. & Lapwood, E. R. Phys. Earth planet. Inter. 10, 12–48 (1975).

    Article  ADS  Google Scholar 

  23. O'Connell, R. J. & Budiansky, B. J. geophys. Res. 82, 5719–5735 (1977).

    Article  ADS  Google Scholar 

  24. Mavko, G. M. J. geophys. Res. 85, 5173–5189 (1980).

    Article  ADS  Google Scholar 

  25. Toramaru, A. & Fujii, N. J. geophys. Res. 91, 9239–9252 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Spiegelman, M. & McKenzie, D. Earth planet. Sci. Lett. 83, 137–152 (1987).

    Article  ADS  Google Scholar 

  27. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  28. Ohtani, E. Earth planet. Sci. Lett. 67, 261–272 (1984).

    Article  ADS  CAS  Google Scholar 

  29. O'Nions, R. K., Evensen, N. M. & Hamilton, P. J. J. geophys. Res. 84, 6091–6101 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Jacobsen, S. B. & Wasserburg, G. J. J. geophys. Res. 84, 7411–7427 (1979).

    Article  ADS  CAS  Google Scholar 

  31. DePaolo, D. J. Geochim. cosmochim. Acta 44, 1185–1196 (1980).

    Article  ADS  CAS  Google Scholar 

  32. McKenzie, D. Earth planet. Sci. Lett. 95, 53–72 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revenaugh, J., Sipkin, S. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 369, 474–476 (1994). https://doi.org/10.1038/369474a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369474a0

  • Springer Nature Limited

This article is cited by

Navigation