Skip to main content
Log in

Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A CONSERVED tyrosine kinase-activated signal transduction pathway has recently been identified that comprises the plasma membrane-bound small guanine-nucleotide-binding protein Ras and the protein kinases Raf, MAP-kinase kinase and MAP kinase1,2. GTP-bound Ras interacts directly with the amino-terminal regulatory domain of Raf3–8, but although Ras and Raf can be coimmunoprecipitated from ligand-stimulated cells9,10, Ras-GTP does not stimulate the kinase activity of Raf in vitro6. Furthermore, we have failed to detect Ras in preparations of active detergent-solubilized Raf, demonstrating that once it is activated, Raf does not require Ras. Whereas Raf is normally cytosolic, in cells expressing active Ras, Raf is associated with the plasma membrane. This led us to investigate whether Ras is required to localize Raf to the plasma membrane in order for Raf to become activated. We fused the membrane localization signal of K-Ras(4B) to the carboxy terminus of Raf. This protein is constitutively active and can be further activated by epidermal growth factor, independently of Ras. Our results indicate that Ras functions as a regulated, membrane-bound anchor for Raf, and that other signal(s) also contribute to Raf activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall, C. J. Curr. Opin. Gen. Dev. 4, 82–89 (1994).

    Article  CAS  Google Scholar 

  2. Dickson, B. & Hafen, E. Curr. Opin. Gen. Dev. 4, 64–70 (1994).

    Article  CAS  Google Scholar 

  3. Van Aelst, L., Barr, M., Marcus, S., Polverino, A. & Wigler, M. Proc. natn. Acad. Sci. U.S.A. 90, 6213–6217 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Votjek, A. B., Hollenberg, S. M. & Cooper, J. A. Cell 74, 205–214 (1993).

    Article  Google Scholar 

  5. Warne, P. H., Rodriguez Viciana, P. & Downward, J. Nature 364, 352–355 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Zhang, X.-f et al. Nature 364, 308–313 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Moodie, S. A., Willumsen, B. M., Weber, M. J. & Wolfman, A. Science 260, 1658–1661 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Koide, H., Satoh, T., Nakafuku, M. & Kaziro, Y. Proc. natn. Acad. Sci. U.S.A. 90, 8683–8686 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Finney, R. E., Robbins, S. M. & Bishop, J. M. Curr. Biol. 3, 805–811 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Hallberg, B., Rayter, S. I. & Downward, J. J. biol. Chem. 269, 3913–3916 (1994).

    CAS  PubMed  Google Scholar 

  11. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Molec. cell. Biol. 5, 3610–3616 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schultz, A. M., Copeland, T. D., Mark, G. E., Rapp, U. R. & Oroszlan, S. Virology 146, 78–89 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Force, T. et al. Proc. natn. acad. Sci. U.S.A. 91, 1270–1274 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Traverse, S. et al. Oncogene 8, 3175–3181 (1993).

    CAS  PubMed  Google Scholar 

  15. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. Cell 57, 1167–1177 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Hancock, J. F., Paterson, H. & Marshall, C. J. Cell 63, 133–139 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Leevers, S. J. & Marshall, C. J. EMBO J. 11, 569–574 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bruder, J. T., Heidecker, G. & Rapp, U. Genes Dev. 6, 545–556 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Feig, L. A. & Cooper, G. M. Molec. cell. Biol. 8, 3235–3243 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Williams, N. G., Roberts, T. M. & Li, P. Proc. natn. Acad. Sci. U.S.A. 89, 2922–2826 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Fabian, J. R., Daar, I. O. & Morrison, D. K. Molec. cell. Biol. 13, 7170–7179 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sözeri, O. et al. Oncogene 7, 2259–2262 (1992).

    PubMed  Google Scholar 

  23. Kolch, W. et al. Nature 364, 249–252 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Gómez, N. & Cohen, P. Nature 353, 170–173 (1991).

    Article  ADS  PubMed  Google Scholar 

  25. Howe, L. R. et al. Cell 71, 335–342 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Stokoe, D. et al. EMBO J. 11, 3985–3994 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alessi, D. R. et al. EMBO J. 13, 1610–1619 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Furth, M. E., Davis, L. J., Fleurdelys, B. & Scolnick, E. M. J. Virol. 43, 294–304 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schaap, D., van der Wal, J., Howe, L. R., Marshall, C. J. & van Blitterswijk, W. J. J. biol. Chem. 268, 20232–20236 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leevers, S., Paterson, H. & Marshall, C. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414 (1994). https://doi.org/10.1038/369411a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369411a0

  • Springer Nature Limited

This article is cited by

Navigation