Skip to main content
Log in

Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CURRENT methods for immobilizing enzymes for use in bioreactors and biosensors1–20 include adsorption on or covalent attachment to a support2–4, micro-encapsulation5,6, and entrapment within a membrane/film7,8,11–20 or gel9. The ideal immobilization method should employ mild chemical conditions, allow for large quantities of enzyme to be immobilized, provide a large surface area for enzyme–substrate contact within a small total volume, minimize barriers to mass transport of substrate and product, and provide a chemically and mechanically robust system. Here we describe a method for enzyme immobilization that satisfies all of these criteria. We have developed a template-based synthetic method that yields hollow polymeric microcapsules of uniform diameter and length. These microcapsules are arranged in a high-density array in which the individual capsules protrude from a surface like the bristles of a brush. We have developed procedures for filling these microcapsules with high concentrations of enzymes. The enzyme-loaded microcapsule arrays function as enzymatic bioreactors in both aqueous solution and organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woodward, J. (ed.) Immobilized Cells and Enzymes—a Practical Approach (IRL, Washington DC, 1985).

  2. Woodward, J. in Immobilized Cells and Enzymes—a Practical Approach (ed. Woodward, J.) Ch 1 (IRL, Washington DC, 1985).

    Google Scholar 

  3. Wolowacz, S. E., Yon-Hin, B. F. Y. & Lowe, C. R. Analyt. Chem. 64, 1541–1545 (1992).

    Article  CAS  Google Scholar 

  4. Yon-Hin, B. F. Y., Smolander, M., Crompton, T & Lowe, C. R. Analyt. Chem. 65, 2067–2071 (1993).

    Article  CAS  Google Scholar 

  5. Gu, K. F., Chang, T. M. S. in Bioreactor Immobilized Enzymes and Cells (ed. Moo-Young, M.) 59–62 (Elsevier, New York, 1988).

    Google Scholar 

  6. Klei, H. E., Sundstrom, D. W. & Shim, D. in Immobilized Cells and Enzymes—a Practical Approach (ed. Woodward, J.) Ch. 4 (IRL Washington DC, 1985).

    Google Scholar 

  7. Bartlett, P. N., All, Z. & Eastwick-Field, V. J. Chem. Soc., Faraday Trans. 88, 2677–2683 (1992).

    Article  CAS  Google Scholar 

  8. Fortier, G. & Belanger, D. Biotechnol. Bioengng 37, 854–858 (1991).

    Article  CAS  Google Scholar 

  9. Ellerby, L. M. et al. Science 255, 1113–1115 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Maidan, R. & Heller, A. Analyt. Chem. 64, 2889–2896 (1992).

    Article  CAS  Google Scholar 

  11. Foulds, N. C. & Lowe, C. R. J. chem. Soc., Faraday Trans. 1 82, 1259–1264 (1986).

    Article  CAS  Google Scholar 

  12. Marchesiello, M. & Genies, E. M. Electrochim. Acta, 37, 1987–1992 (1992).

    Article  CAS  Google Scholar 

  13. Marchesiello, M. & Genies, E. M. J. Electroanal. Chem. 358, 35–48 (1993).

    Article  CAS  Google Scholar 

  14. Almeida, N. F., Beckman, E. J. & Ataai, M. M. Biotechnol. Bioengng 42, 1037–1045 (1993).

    Article  CAS  Google Scholar 

  15. Bartlett, P. N. & Whitaker, R. G. J. Electroanal. Chem. 24, 37–48 (1987).

    Article  Google Scholar 

  16. Kajiya, Y., Sugai, H., Iwakura, C. & Yoneyama, H. Analyt. Chem. 63, 49–54 (1991).

    Article  CAS  Google Scholar 

  17. Umana, M. & Waller, J. Analyt. Chem. 58, 2979–2983 (1986).

    Article  CAS  Google Scholar 

  18. Sun, Z. & Tachikawa, H. Analyt. Chem. 64, 1112–1117 (1992).

    Article  CAS  Google Scholar 

  19. Foulds, N. C. & Lowe, C. R. Analyt. Chem. 60, 2473–2478 (1988).

    Article  CAS  Google Scholar 

  20. Tatsuma, T. & Watanabe, T. J. Electroanal. Chem. 356, 245–253 (1993).

    Article  CAS  Google Scholar 

  21. Cai, Z. & Martin, C. R. J. Am. chem. Soc. 111, 4138–4139 (1989).

    Article  CAS  Google Scholar 

  22. Martin, C. R., Van Dyke, L. S., Cai, Z. & Liang, W. J. Am. chem. Soc. 112, 8976–8977 (1990).

    Article  CAS  Google Scholar 

  23. Martin, C. R. Adv. Mater. 3, 457–459 (1991).

    Article  CAS  Google Scholar 

  24. Martin, C. R., Parthasarathy, R. & Menon, V. Synth. Metals 55-57, 1165–1170 (1993).

    Article  Google Scholar 

  25. Pool, R. Science. 247, 1410–1411 (1990).

    ADS  Google Scholar 

  26. Georger, J. H. et al. J. Am. chem. Soc. 109, 6169–6175 (1987).

    Article  CAS  Google Scholar 

  27. Koopal, C. G. J. et al. Synth. Metals 51, 397–405 (1992).

    Article  CAS  Google Scholar 

  28. Penner, R. M., Van Dyke, L. S. & Martin, C. R. J. phys. Chem. 92, 5274–5282 (1988).

    Article  CAS  Google Scholar 

  29. Baker, R. W. et al. Membrane Separation Systems Vol. II, 151–188 (Noyes Data Corp., New Jersey, 1991).

    Google Scholar 

  30. Martin, C. R., Parthasarathy, R. & Menon, V. Electrochim. Acta (in the press).

  31. Worthington Enzyme Manual 41–42 (Worthington Biochemical Corp., New Jersey, 1972).

  32. Dalvie, S. K. & Baltus, R. E. Biotechnol. Bioengng 40, 1174–1180 (1992).

    Article  Google Scholar 

  33. Sober, H. A. in Handbook of Biochemistry Selected Data for Molecular Biology (ed. Sober, H. A.) C-11 (Chemical Rubber Company, Cleveland, Ohio, 1968).

    Google Scholar 

  34. Zaks, A. & Klibanov, A. M., J. biol. Chem. 263, 3194–3201 (1988).

    CAS  PubMed  Google Scholar 

  35. Burgmayer, P. & Murray, R. W. in Handbook of Conducting Polymers Vol. 1 (ed. Skotheim, T. A.) Ch. 15 (Marcel Dekker Inc., New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthasarathy, R., Martin, C. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature 369, 298–301 (1994). https://doi.org/10.1038/369298a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369298a0

  • Springer Nature Limited

This article is cited by

Navigation