Skip to main content
Log in

Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN studies of moths flying upwind to a pheromone source, attention has focused on the influence on flight orientation of the composition1,2 and concentration3,4 of the chemical message, and of changes in the visual environment5,6 and in wind speeds7–9. The chemical signal must be intermittent for moths to fly upwind10–12, when they usually follow a zigzag track, the evident expression of a self-steered counterturning programme13,14. The integration of counterturning and optomotor anemotaxis allows insects to polarize the zigzags upwind in odour plumes10,15. Not all moths, however, zigzag along a plume16,17. It has been suggested that the propensity to zigzag or to fly straight upwind is related to the frequency at which males encounter pheromone filaments that comprise the plume, as well as the male's latency of response, characteristic for each moth species, to both the onset and loss of contact with filaments18. Here we present evidence that flight manoeuvres are dictated by the interactions of the male with individual odour pulses. We use Cadra cautella, the almond moth, to show how the structure of an odour plume19,20 can greatly modify the flight track. Males following either turbulent or mechanically pulsed plumes fly faster and straighter upwind, and locate sources more frequently than males following continuous narrow plumes. Males also fly straighter upwind to fast-pulsed plumes than to slow-pulsed plumes. The temporally modulated interplay between counterturning and optomotor anemotaxis that is induced by the plume's structure therefore seems to explain the manoeuvres and resultant flight track shapes made by C. cautella males when flying upwind towards a pheromone source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linn, C. E., Campbell, M. G. & Roelofs, W. L. Science 237, 650–652 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Willis, M. A. & Baker, T. C. J. Insect Behav. 1, 357–371 (1988).

    Article  Google Scholar 

  3. Kuenen, L. P. S. & Baker, T. C. Physiol. Ent. 7, 423–434 (1982).

    Article  CAS  Google Scholar 

  4. Cardé, R. T. & Hagaman, T. E. Environ. Ent. 8, 475–484 (1979).

    Article  Google Scholar 

  5. Kuenen, L. P. S. & Baker, T. C. Physiol. Ent. 7, 193–202 (1982).

    Article  Google Scholar 

  6. David, C. T. J. comp. Physiol. A 147, 485–493 (1982).

    Article  Google Scholar 

  7. Farkas, S. R. & Shorey, H. H. Science 178, 67–68 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Willis, M. A. & Cardé, R. T. J. comp. Physiol. A 167, 699–706 (1990).

    Article  Google Scholar 

  9. Willis, M. A. & Arbas, E. A. J. comp. Physiol. A 169, 427–440 (1991).

    Article  CAS  Google Scholar 

  10. Kennedy, J. S., Ludlow, A. R. & Sanders, C. J. Nature 295, 475–477 (1980).

    Article  ADS  Google Scholar 

  11. Willis, M. A. & Baker, T. C. Physiol. Ent. 9, 341–358 (1983).

    Article  Google Scholar 

  12. Baker, T. C., Willis, M. A., Haynes, K. F. & Phelan, P. L. Physiol. Ent. 10, 257–265 (1985).

    Article  Google Scholar 

  13. Kennedy, J. S. Physiol. Ent. 8, 109–120 (1983).

    Article  Google Scholar 

  14. Kennedy, J. S. in Mechanisms in Insect Olfaction (eds Payne, T. L., Birch, M. C. & Kennedy, C. E. J.) 11–25 (Clarendon, Oxford, 1986).

    Google Scholar 

  15. Baker, T. C., Willis, M. A. & Phelan, P. L. Physiol. Ent. 9, 365–376 (1984).

    Article  Google Scholar 

  16. Haynes, K. F. & Baker, T. C. Physiol. Ent. 14, 279–289 (1989).

    Article  Google Scholar 

  17. Witzgall, P. & Arn, H. Z. Naturforsch 45c, 1067–1069 (1990).

    Article  CAS  Google Scholar 

  18. Baker, T. C. Proc. 10th Internat. Symp. on Olfaction and Taste (ed. Døving, K. B.) 18–25 (Oslo, 1990).

    Google Scholar 

  19. Wright, R. H. Can. Ent. 90, 81–89 (1958).

    Article  Google Scholar 

  20. Murlis, J., Elkinton, J. S. & Cardé, R. T. A. Rev. Ent. 37, 505–532 (1992).

    Article  Google Scholar 

  21. Mafra-Neto, A. thesis, Univ. Massachusetts, Amherst (1993).

  22. Kuenen, L. P. S. & Baker, T. C. Physiol. Ent. 7, 423–434 (1982).

    Article  CAS  Google Scholar 

  23. Vickers, N. J. & Baker, T. C. J. Insect Behav. 5, 669–687 (1992).

    Article  Google Scholar 

  24. Vickers, N. J. thesis, Univ. California, Riverside (1992).

  25. Charlton, R. E., Kanno, H., Collins, R. D. & Cardé, R. T. Physiol. Ent. 18, 349–362 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mafra-Neto, A., Cardé, R. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994). https://doi.org/10.1038/369142a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369142a0

  • Springer Nature Limited

This article is cited by

Navigation