Skip to main content
Log in

Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE picornavirus family includes several pathogens such as poliovirus, rhinovirus (the major cause of the common cold), hepat-itis A virus and the foot-and-mouth disease virus. Picornaviral proteins are expressed by direct translation of the genomic RNA into a single, large polyprotein precursor1,2. Proteolysis of the viral polyprotein into the mature proteins is assured by the viral 3C enzymes, which are cysteine proteinases3–6. Here we report the X-ray crystal structure at 2.3 Å resolution of the 3C proteinase from hepatitis A virus (HAV-3C). The overall architecture of HAV-3C reveals a fold resembling that of the chymotrypsin family of serine proteinases, which is consistent with earlier predictions7,8. Cata-lytic residues include Cys 172 as nucleophile and His 44 as general base. The 3C cleavage specificity for glutamine residues is defined primarily by His 191. The overall structure suggests that an inter-molecular (trans) cleavage releases 3C and that there is an active proteinase in the polyprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palmenberg, A. C. A. Rev. Microbiol. 44, 603–623 (1990).

    Article  CAS  Google Scholar 

  2. Dougherty, W. G. & Semler, B. L. Microbiol. Rev. 57, 781–822 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Argos, P., Kamer, G., Nicklin, M. J. H. & Wimmer, E. Nucleic Acids Res. 12, 7251–7267 (1984).

    Article  CAS  Google Scholar 

  4. Ivanoff, L. A., Towatari, T., Ray, J., Korant, B. D. & Petteway, S. R. Jr . Proc. natn. Acad. Sci. U.S.A. 83, 5392–5396 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Hämmerle, T., Hellen, C. U. T. & Wimmer, E. J. biol. Chem. 266, 5412–5416 (1991).

    PubMed  Google Scholar 

  6. Kean, K. M., Teterina, N. L., Marc, D. & Girard, M. Virology 181, 609–619 (1991).

    Article  CAS  Google Scholar 

  7. Gorbalenya, A. E., Donchenko, A. P., Blinov, V. M. & Koonin, E. V. FEBS Lett. 243, 103–114 (1989).

    Article  CAS  Google Scholar 

  8. Bazan, J. F. & Fletterick, R. J. Proc. natn. Acad. Sci. U.S.A. 85, 7872–7876 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Chernaia, M. M., Malcolm, B. A., Allaire, M. & James, M. N. G. J. molec. Biol. 234, 890–893 (1993).

    Article  CAS  Google Scholar 

  10. Chothia, C. & Janin, J. Biochemistry 21, 3955–3965 (1982).

    Article  CAS  Google Scholar 

  11. Fujinaga, M., Delbaere, L. T. J., Brayer, G. D. & James, M. N. G. J. molec. Biol. 183, 479–502 (1985).

    Article  Google Scholar 

  12. Tong, L., Wengler, G. & Rossmann, M. G. J. molec. Biol. 230, 228–247 (1993).

    Article  CAS  Google Scholar 

  13. Fujinaga, M. et al. J. molec. Biol. 195, 397–418 (1987).

    Article  CAS  Google Scholar 

  14. Drenth, J., Kalk, K. H. & Swen, H. M. Biochemistry 15, 3731–3738 (1976).

    Article  CAS  Google Scholar 

  15. Kraut, J. et al. Cold Spring Harbor Symp. quant. Biol. 36, 117–123 (1971).

    Article  CAS  Google Scholar 

  16. Jewell, D. A., Swietnicki, W., Dunn, B. M. & Malcolm, B. A. Biochemistry 31, 7862–7869 (1992).

    Article  CAS  Google Scholar 

  17. Read, R. J. Acta. crystallogr. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  18. Sakabe, N. Nucl. Inst. Meth. Phys. Res. A303, 448–463 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Higashi, T. J. appl. Crystallogr. 22, 9–18 (1989).

    Article  CAS  Google Scholar 

  20. Sheldrick, G. M. Acta. crystallogr. A46, 467–473 (1990).

    Article  CAS  Google Scholar 

  21. Otwinowski, Z. CCP4 Study Weekend 80–86 (Daresbury, UK, 1991).

    Google Scholar 

  22. Cohen, J. I., Ticehurst, J. R., Purcell, R. H., Buckler-White, A. & Baroudy, B. M. J. Virol. 61, 50–59 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brünger, A. T. X-PLOR Version 3.1 Manual (Yale Univ. Press, New Haven and London, 1992).

    Google Scholar 

  24. Hendrickson, W. A. Meth. Enzym. 115, 252–270 (1985).

    Article  CAS  Google Scholar 

  25. Tronrud, D. E., TenEyck, L. F. & Matthews, B. W. Acta crystallogr. A43, 489–503 (1987).

    Article  CAS  Google Scholar 

  26. Jones, T. A. Meth. Enzym. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  27. Morris, A. L., MacArthur, M. W., Hutchinson, E. G. & Thornton, J. M. Proteins 12, 345–364 (1992).

    Article  CAS  Google Scholar 

  28. Lüthy, R., Bowie, J. U. & Eisenberg, D. Nature 356, 83–85 (1992).

    Article  ADS  Google Scholar 

  29. Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  30. Evans, S. V. J. molec. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaire, M., Chernaia, M., Malcolm, B. et al. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369, 72–76 (1994). https://doi.org/10.1038/369072a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369072a0

  • Springer Nature Limited

This article is cited by

Navigation