Skip to main content
Log in

A lower critical ordering transition in a diblock copolymer melt

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DIBLOCK copolymers, comprised of two distinct homopolymers covalently bonded together at one end, undergo a transition on cooling from a state in which the segments of the blocks are homogeneously mixed to one in which they are segregated locally1,2. This microphase separation is driven by the enthalpy of unfavourable interactions between segments. Here we report the microphase separation of a diblock copolymer melt on heating. Similar in nature to the lower critical solution temperature seen in polymer mixtures, this lower critical ordering transition is driven by entropic factors—specifically, by a negative volume change on mixing of the blocks. The transition to the microphase-separated state alters the rheological and mechanical properties of the copolymer markedly, the material gaining a non-zero equilibrium modulus above the ordering transition. This suggests potential technological applications of these copolymer systems as 'smart' materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodman, I. (ed.) Developments in Block Copolymers (Applied Science, New York, 1982).

  2. Meier, D. J. (ed.) Block Copolymers: Science and Technology (MMI Hardwood Academic, Midland, 1983).

  3. Meier, D. J. J. Polym. Sci. C26, 81–98 (1969).

    Google Scholar 

  4. Leary, D.F. & Williams, M. C. J. Polym. Sci. B8, 335–340 (1970).

    Article  Google Scholar 

  5. Helfand, E. & Wasserman, Z. R. Macromolecules 9, 879–887 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Semenov, A. N. Soviet Phys. JETP 61, 733–742 (1985).

    Google Scholar 

  7. Ohta, T. & Kawasaki, K. Macromolecules 19, 2621–2632 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Olvera de la Cruz, M., Mayes, A. M. & Swift, B. W. Macromolecules 25, 944–948 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Hashimoto, T., Nagatoshi, K., Todo, A., Hasegawa, H. & Kawai, H. Macromolecules 7, 364–373 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Hashimoto, T., Todo, A., Itoi, H. & Kawai, H. Macromolecules 10, 377–384 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Hashimoto, T., Shibayama, M. & Kawai, H. Macromolecules 13, 1237–1247 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Thomas, E. L., Alward, D. B., Kinning, D. J., Handlin, D. L. & Fetters, L. J. Macromolecules 19, 2197–2202 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Hasegawa, H., Tanaka, H., Yamasaki, K. & Hashimoto, T. Macromolecules 20, 1651–1662 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Thomas, E.L., Anderson, D.M., Henkee, C. S. & Hoffman, D. Nature 334, 598–601 (1992).

    Article  ADS  Google Scholar 

  15. Almdahl, K., Koppi, K. A., Bates, F. S. & Mortensen, K. Macromolecules 25, 1743–1751 (1992).

    Article  ADS  Google Scholar 

  16. Leibler, L. Macromolecules 13, 1602–1617 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Ramos, A. R. & Cohen, R. E. Polym. Engng Sci. 17, 639–646 (1977).

    Article  CAS  Google Scholar 

  18. Fischer, E. W. & Jung, W. G. Makromol. Chem., Makromol. Symp. 26, 179–189 (1989).

    Article  CAS  Google Scholar 

  19. Bates, F. S., Rosedale, J. H., Bair, H. E. & Russell, T. P. Macromolecules 22, 2557–2564 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Bates, F. S., Rosedale, J. H. & Fredrickson, G. H. J. chem. Phys. 92, 6255–6270 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Rosedale, J. H. & Bates, F. S. Macromolecules 23, 2329–2338 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Fredrickson, G. H. & Helfand J. chem. Phys. 87, 697–705 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Yang, H., Hadziioannou, G. & Stein, R. S. J. Polym. Sci., Polym. Phys. edn 21, 1591–1595 (1983).

    Google Scholar 

  24. Russell, T. P. in Handbook of Synchrotron Radiation vol. 3 (eds Brown, G. S. & Moncton, D. E.) 379–469 (North-Holland, Amsterdam, 1991).

    Google Scholar 

  25. Bank, M., Leffingwell, J. & Thies, C. J. Polym. Sci. Part A-2 10, 1097–1109 (1972).

    Article  CAS  Google Scholar 

  26. McMaster, L. P. Macromolecules 6, 760–773 (1973).

    Article  ADS  CAS  Google Scholar 

  27. Nishi, T., Wang, T. T. & Kwei, T. K. Macromolecules 8, 227–234 (1975).

    Article  ADS  CAS  Google Scholar 

  28. Lacombe, R. H. & Sanchez, I. C. J. phys. Chem. 80, 2568–2580 (1976).

    Article  CAS  Google Scholar 

  29. Paul, D. R. & Newman, S. Polymer Blends (Academic, New York, 1978).

    Book  Google Scholar 

  30. Mortensen, K., Brown, W. & Norden, B. Phys. Rev. Lett. 68, 2340–2343 (1992).

    Article  ADS  CAS  Google Scholar 

  31. Mortensen, K. Europhys. Lett. 19, 599–604 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Yeung, M., Desai, R. C., Shi, A.-C. & Noolandi, J. Phys. Rev. Lett. (in the press).

  33. Mam, S., Malone, M. F. & Winter, H. H. J. Rheol. 36, 1625–1649 (1992).

    Article  ADS  Google Scholar 

  34. Bauer, B., Hammouda, B. & Russell, T. P. Macromolecules (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, T., Karis, T., Gallot, Y. et al. A lower critical ordering transition in a diblock copolymer melt. Nature 368, 729–731 (1994). https://doi.org/10.1038/368729a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368729a0

  • Springer Nature Limited

This article is cited by

Navigation